Busy. Please wait.
Log in with Clever

show password
Forgot Password?

Don't have an account?  Sign up 
Sign up using Clever

Username is available taken
show password

Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.
Your email address is only used to allow you to reset your password. See our Privacy Policy and Terms of Service.

Already a StudyStack user? Log In

Reset Password
Enter the associated with your account, and we'll email you a link to reset your password.
Didn't know it?
click below
Knew it?
click below
Don't Know
Remaining cards (0)
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

  Normal Size     Small Size show me how

MCAT Physics Ch. 8

Electromagnetic Waves Transverse waves that consist of an oscillating electric field and an oscillating magnetic field. These two fields are perpendicular to each other, and to the direction of propagation of the wave.
Electromagnetic Spectrum Range of frequencies and wavelengths found in EM waves.
EM Spectrum Includes (From Low To High Energy): Radio waves, microwaves, infrared, visible light, ultraviolet light, x-rays, and gamma rays
Visible Spectrum Runs from approx. 400 nm (violet) to 700 nm (red)
Reflection Rebounding of incident light waves at the boundary of a medium.
Law Of Reflection States that the incident angle will equal the angle of reflection, as measured from the normal.
Spherical Mirrors Have: Centers and radii of curvature as well as focal points.
Concave Mirrors Are: Converging systems that can produce real, inverted images or virtual, upright images, depending on the placement of the object relative to the focus
Convex Mirrors Are: Diverging systems that will only produce virtual, upright images
Plane Mirrors Also: Produce virtual, upright images which are the same size as teh object. These can be thought of as spherical mirrors with infinite radii of curvature.
Refraction The bending of light as it passes from one medium to another.
Speed Of Light Changes Depending ON: Index of refraction of the medium, which causes refraction.
Amount Of Refraction Depends On: The wavelength of the light involved. This causes dispersion of light through a prism.
Snell's Law (Law Of Refraction) States: There is an inverse relationship between the index of refraction and the sine of the angle of refraction (measured from the normal).
Total Internal Reflection Occurs when light cannot be refracted out of a medium and is instead reflected back inside the medium.
When Total Internal Reflection Happens: This happens when light moves from a medium with a higher index of refraction to a medium with a lower index of refraction with a high incident angle.
The Minimum Incident Angle At Which Total Internal Reflection Occurs Is: The critical angle
Lenses Reflect light to form images of objects
Symmetrical Lenses Have: Focal points on each side.
Convex Lenses: Converging systems and can produce real, inverted images or virtual, upright images.
Concave Lenses Are: Diverging systems that will only produce virtual, upright images.
Lenses With Non-negligible Thickness Requires Use Of: Lensmaker's Equation
Diffraction The bending and spreading out of light waves as they pass through a narrow slit.
Diffraction May Produce: A large central light fringe surrounded by alternating light and dark fringes with the addition of a lens.
Inference Supports: The wave theory of light
Young's Double-slit Experiment Shows the constructive and destructive interference of waves that occur as light passes through parallel slits, resulting in minima (dark fringes) and maxima (bright fringes) of intensity
Plane-polarized Light Light in which all of the light rays have electric fields with parallel orientation
Plane-polarized Light Is Created By: Passing unpolarized light through a polarizer
Circularly Polarized Light Light in which all the light rays have electric fields with equal intensity but constantly rotating direction
Circularly Polarized Light Is Created By: Exposing unpolarized light to special pigments or filters.
Eq. 8.1 Speed Of Light From Frequency And Wavelength c = f * Lambda
Eq. 8.2: Law Of Reflection Theta1 = Theta2
Eq. 8.3: Optics Equation 1/f = 1/o + 1/i = 2/r. f = focal distance, distance between focal point F and the mirror. o = distance between the object and the mirror. i = distance between the image and the mirror. r = distance between C and the mirror.
Eq. 8.4: Magnification m = -i / o. i = distance between the image and the mirror. o = distance between object and the mirror.
Eq. 8.5: Index Of Refraction n = c / v. c = speed of light in a vacuum. v = speed of light in the medium.
Eq. 8.6: Snell's Law n1*sin(theta1) = n2*sin(theta2)
Eq. 8.7: Critical Angle Thetac = sin-1(n2/n1)
Eq. 8.8: Lensmaker's Equation 1/f = (n-1) * (1/r1 - 1/r2). f = focal length. n = index of refraction of the lens material. r1 and r2 = radius of curvature of the first and second lens surface
Eq. 8.9: Power P = 1 / f. f = focal length. P is positive for a convergin lens. P is negative for a diverging lens.
Eq. 8.10: Focal Length Of Multiple Lens System 1/f = 1/f1 + 1/f2 + 1/f3 + ... + 1/fn
Eq. 8.11: Power Of Multiple Lens System P = P1 + P2 + P3 + ... + Pn
Eq. 8.12: Magnification Of Multiple Lens System m = m1 * m2 * m3 * ... * mn
Eq. 8.13: Positions Of Dark Fringes In Slit-Lens Setup a*sin(theta) = n*lambda. a = width of slight. theta = angle between the line drawn from the center of lens to the dark fringe and the axis of the lens. n = integer that indicates the number of the fringe. lambda = wavelength of the incident wave.
Eq. 8.14: Positions Of Dark Fringes In Double-Slit Setup d*sin(theta) = (n + 1/2) * lambda. d = distance between the two slits. theta = angle between the line drawn from the midpoint between the two slits to the dark fringe and the normal. n = integer that indicates num. of the fringe. lda = wlen of inci. wave
Created by: SamB91
Popular MCAT sets




Use these flashcards to help memorize information. Look at the large card and try to recall what is on the other side. Then click the card to flip it. If you knew the answer, click the green Know box. Otherwise, click the red Don't know box.

When you've placed seven or more cards in the Don't know box, click "retry" to try those cards again.

If you've accidentally put the card in the wrong box, just click on the card to take it out of the box.

You can also use your keyboard to move the cards as follows:

If you are logged in to your account, this website will remember which cards you know and don't know so that they are in the same box the next time you log in.

When you need a break, try one of the other activities listed below the flashcards like Matching, Snowman, or Hungry Bug. Although it may feel like you're playing a game, your brain is still making more connections with the information to help you out.

To see how well you know the information, try the Quiz or Test activity.

Pass complete!
"Know" box contains:
Time elapsed:
restart all cards