 or or taken why

Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.

Don't know
Know
remaining cards
Save
0:01
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

Normal Size     Small Size show me how

# MCAT Physics Ch. 6

TermDefinition
Current Movement of charge that occurs between two points that have different electrical potentials. Negatively charged particles (electrons) move in a circuit from low potential to high potential.
Current Flows Only In: Conductive materials.
Metallic Conduction Relies On: Uniform movement of free electrons in metallic bonds
Electrolytic Conduction Relies On: Ion conc. of a solution
Insulators Materials that do not conduct a current
Kirchhoff's Laws Express conservation of charge and energy
Kirchhoff's Junction Rule States that the sum of currents directed into a point within a circuit equals the sum of the currents directed away from that point
Kirchhoff's Loop Rule States that in a closed loop, the sum of voltage sources is always equal to the sum of voltage drops
Resistance Opposition to the movement of electrons through a material.
Resistors Conductive materials with a moderate amount of resistance that slow down electrons without stopping them.
Ohm's Law States That: For a given resistance, the magnitude of the current through a resistor is proportional to the voltage drop across the resistor
Resistors In Series Are: Additive and sum together to create the total resistance of a circuit
Resistors In Parallel Cause: A decrease in equivalent resistance of a circuit.
Capacitors Have The Ability To: Store and discharge electrical potential energy
Parallel Plate Capacitors' Capacitance Is Determined By: The area of the plates and the distance between the plates.
Capacitors In Series Cause A: Decrease in the equivalent capacitance of a circuit.
Capacitors In Parallel: Sum together to create a larger equivalent capacitance.
Dielectric Materials Insulators placed between the plates of a capacitor that increase the capacitance of the capacitor by a factor equal to the material's dielectric constant, k
Ammeters Are Inserted In Series In A Circuit To: Measure current since they negligible resistance
Voltmeters Are Inserted In Parallel In A Circuit To Measure: A voltage drop, since they have very large resistances
Ohmmeters Are Inserted Around A: Resistive element to measure resistance, since they are self-powered and have negligible resistance.
Eq. 6.1: Current I = Q / Delta T. Q = charge.
Eq. 6.2: Kirchhoff's Junction Rule I intojunction = I leaving junction. I = current.
Eq. 6.3: Kirchhoff's Loop Rule Vsource = Vdrop. V = voltage.
Eq. 6.4: Definition Of Resistance R = d*L / A. d = resistivity. L = length of the resistor. A = cross-sectional area.
Eq. 6.5: Ohm' Law V = IR. V = voltage. I = Current. R = resistance.
Eq. 6.6: Voltage And Cell emf V = Ecell - i*r(int). Ecell = emf of cell. i = current through cell. r(int) = internal resistance.
Eq. 6.7: Definition Of Power P = W / t = Delta E / t. Delta E = change in emf.
Eq. 6.8: Electric Power P = IV = I^2 * R = V^2 / R. I = current. R = resistance. V = voltage.
Eq. 6.9: Voltage Drop Across Circuit Elements (Series) Vs = V1 + V2 + V3 +...+ Vn
Eq. 6.10: Equivalent Resistance Series Rs = R1 + R2 + R3 + ... + Rn
Eq. 6.11: Voltage Drop Across Circuit Elements (Parallel) Vp = V1 = V2 = V3 = ... = Vn
Eq. 6.12: Equivalent Resistance (Parallel) 1 / Rp = 1 / R1 + 1 / R2 + 1 / R3 + ... + 1 / Rn
Eq. 6.13: Definition Of Capacitance C = Q/V. Q = charge. V = voltage.
Eq. 6.14: Capacitance Based On Parallel Plate Geometry C = E0 (A / d). E0 = permittivity of free space, 8.85 x 10^-12 F/m. A = area of overlap of two plates. d = separation of two plates.
Eq. 6.15: Electric Field In A Capacitor E = V / d. V = voltage. d = distance between two plates.
Eq. 6.16: Potential Energy Of A Capacitor: U = 1/2 * CV^2. C = capacitance. V = voltage.
Eq. 6.17: Capacitance With A Dielectric Material C^1 = kC. k = dielectric constant, the measure of a material's insulating ability. C = capacitance.
Eq. 6.18: Equivalent Capacitance (Series) 1 / Cs = 1 / C1 + 1 / C2 + 1 / C3 + ... + 1 / Cn
Eq. 6.19: Equivalent Capacitance (Parallel) Cp = C1 + C2 + C3 + ... + Cn
Created by: SamB91