 or or taken why

Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.

Enter the associated with your account, and we'll email you a link to reset your password.
Don't know
Know
remaining cards
Save
0:01
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

Normal Size     Small Size show me how

Moment of Inertia

Moment of Inertia of Different Shapes

Quarter-Circular Arc Centroid (x,y)= (2r/π, 2r/π) MOI= πr/2
Semi-Circular Arc Centroid (x,y)= (0, 2r/π) MOI= πr
Arc of Circle Centroid (x,y)= (rsinα/α,0) MOI= 2αr
Triangular Area Centroid (x,y)= (0,h/3) MOI= bh/3
Quarter circular area Centroid (x,y)= (4r/3π, 4r/3π) MOI= πr²/2
Quarter Elliptical Area Centroid (x,y)= (4a/3π, 4b/3π) MOI= πab/4
Semi Elliptical Area Centroid (x,y)= (0, 4b/3π) MOI= πab/2
Parabolic spandrel (y=kx²) Centroid (x,y)= (3a/4, 3h/10) MOI= ah/3
General spandrel (y=kx^n) Centroid (x,y)= ([n+1)/(n+2)]a,[(n+1)/(4n+2)]h) MOI= ah/n+1
Circular Sector Centroid (x,y)= (2rsinα/3α,0) MOI= αr²
Rectangle MOI about centroidal axis(Ix'x',Iy'y')= bh³/12, b³h/12 MOI about axes (Ixx,Iyy)= bh³/3, b³h/3 Polar moment of inertia= Ixx+Iyy
Triangle Ix'x'=bh³/36 Ixx=bh³/12
Circle Ixx= Iyy= πR^4/4 Jo= πR^4/2
Semicircle Ixx= Iyy= πR64/8 Jo= πR^4/2 Ix'x'= 0.11R64
Quarter Circle Ixx= Iyy= πR^4/16 Jo= πR^4/8
Ellipse Ixx= πab³/4 Iyy= πa³b/4 Jo= πab/4(a²+b²)