click below
click below
Normal Size Small Size show me how
Bacteriology 1
Archaea and Bacteria
| Question | Answer |
|---|---|
| Why analyse small subunit ribosomal RNA? | Genes are quite stable and changes slowly in time, not subjected to horizontal gene transfer, contain variable region(compare between close related bacteria), contain conserved region(compare between distant related bacteria) |
| Single species from The Archaea | Archaeon |
| Shapes of Archaea | Spherical, Rods, Spiral, Lobed, Cuboidal, Triangular, Plate shaped, Irregular, Pleomrophic |
| Spherical | Methanococcus jannaschii |
| Rods | Methonobacterium thermoautotrophicum |
| Lobed | Sulfolobus acidocaldarius |
| Triangular | Haloarcula japonicus |
| Irregular | Pyrolobus fumarii |
| Arrangement | Single cells, filamentous, aggregates |
| Single cells | Methanococcus jannaschii |
| Filamentous | Thermofilum |
| Aggregates | Methanosarcina acetivorans |
| Sizes of The Archaea | Diameter= 0.1 - > 15 micrometer, Filaments can up to 100mm |
| Multiplication of The Archaea | Binary fission,Budding, Fragmentation, Other mechanisms |
| Physiology of The Archaea | Aerobic, Facultatively anaerobic, Strictly anaerobic |
| Archaeal Physiological Groups | Methanogenc Archaea, Archaeal sulfate reducers, Extremely halophilic Archaea, Cell wall-less Archaea, Extremely Thermophilic Sulfur Metabolisers |
| Methanogenc Archaea | Strict anaerobes, Methane as major metabolic end product-Methanobacterium, Methanococcus, Methanomicrobium |
| Archaeal Sulfate Reducers | Strict anaerobes, Themophilic, Gram negative, H2S formed from thiosulfate and sulfate- Archaeoglobus |
| Extremely Halophilic Archaea | Mesophilic, Neutrophilic/Alkalophilic, Gram negative/gram positive, Most species require NaCl > 1.5M- Halobacterium, Halococcus |
| Cell wall-less Archaea | Thermoacidophilic, Facultatively anaerobic, Pleomorphic cells lacking cell walls- Thermoplasma |
| Extremely Thermophilic Sulfur Metabolisers | Obligate thermophilic, Gram negative, Most are S metabolisers- S reduced to H2S anaerobically, H2S/S oxidised to H2SO4 aerobically- Desulfurococcus, Pyrodictium, Pyrococcus |
| Nutritional types of The Archaea | Photoautotrophs, Photoheterotrophs, Lithoautotrophs, Lithoheterotrophs, Chemoautotrophs, Chemoheterotrophs |
| Phototrophs | Halobacteria |
| Lithotrophs | Ferroglobus, Methanobacterium |
| Organotrophs | Pyrococcus, Sulfolobus |
| Most Achaea | are extremophiles, no archaeal pathogens known |
| Optimal growth temperature | Psychrophiles, Mesophiles, Hyperthermophiles |
| hyperthermophiles | Pyrolobus fumarii |
| acidophiles | sulfolobus acidocaldarius |
| halophiles | Haloarcula japonicus |
| Classification of Archaea | Kor archaeota, Cren archaeota, Eury archaeota, Nano archaeota |
| Crenarchaeota | Thermoproteus, sulfolobus |
| Euryarchaeota | Methanococcus, Methanobacterium |
| Nanoarchaeota | Ignicoccus |
| Extremophile archaea-Pyrococcus furiosus | Pfu DNA polymerase(thermocycling for polymerase chain reaction) |
| Extremophile archaea-Thermus aquaticus | Taq polymerase(thermocycling for polymerase chain reation) |
| Extremophile archaea-Pyrococcus | allow food processing at high temperatures(production of low lactose milk and whey) |
| Methanogenic archaea | carry out anaerobic digestion and produce biogas(sewage treatment) |
| Acidophilic archaea | extraction of metals |
| Achaeocins-Haloarchaea, Sulfolobus | antibiotics |