click below
click below
Normal Size Small Size show me how
GMAT - Algebra
Key GMAT Algebra
| Question | Answer |
|---|---|
| -1^2= | 1 |
| 0^2= | 0 |
| 1^2= | 1 |
| 2^2= | 4 |
| 2^3= | 8 |
| 2^4= | 16 |
| 2^5= | 32 |
| 2^6= | 64 |
| 3^2= | 9 |
| 3^3= | 27 |
| 3^4= | 81 |
| 4^2= | 16 |
| 4^3= | 64 |
| 4^4= | 256 |
| 5^2= | 25 |
| 6^2= | 36 |
| 5^3= | 125 |
| 5^4= | 625 |
| 7^2= | 49 |
| 8^2= | 64 |
| 9^2= | 81 |
| 10^2= | 100 |
| 11^2= | 121 |
| 12^2= | 144 |
| 13^2= | 169 |
| 14^2= | 196 |
| 15^2= | 225 |
| 20^2= | 400 |
| 25^2= | 625 |
| x^0= | 1 if x not equal to 0 |
| x^1= | x |
| What are the "Order of Operations"? | 1. () -> inner most first 2. ^ 3. x 4. / 5. + 6. - |
| (x^5)(x^-4) = | x |
| (a/b)+(c/d) = | (ad+bc)/bd |
| (2/7)(5/3) = | 10/21 |
| (x^a/x^b)= | x^(a-b) |
| x^-a= | 1/x^a |
| (x^a)^b= | x^ab |
| x^a + x^b = | x^(a+b) |
| (2/7) / (3/5) = | 10/21 |
| 1/(y^-b) = | y^b |
| (5xyz^2)^2 = | 25(x^2)(y^2)(z^4) |
| x^(1/2) = | sqrt(x) |
| sqrt(2) = | 2^(1/2) |
| sqrt(1) = | 1 |
| sqrt(x^2) = | |x| |
| sqrt(2^4) = | 2^(4/2) = 4 |
| sqrt(72) = | 6sqrt(2) |
| sqrt(3) x sqrt(12) = | sqrt(36) = 6 |
| sqrt(2) + sqrt(2) + sqrt(2) = | 3sqrt(2) |
| sqrt(16) | 4 |
| Solve for x x^2 = 16 | 4 or -4 |
| What is the coefficient of 3y^2 | 3 |
| Solve for x x^2 + 8x + 16 = 0 | -4 |
| Solve for x x^2 – 18x +81 = 0 | 9 |
| Solve for x x^2 – 64 = 0 | -8 or 8 |
| Solve for x (x+8)(x-8)=0 | -8 or 8 |
| (x-9)^2 = 0 | 9 |
| (x+4)^2 = 0 | -4 |
| Percent Difference 5 increased to 8 | 60% |
| 6,000,000 / 12,000 = | 500 |
| Solve for y: 3y-3 < 5y+7 | y > -5 |
| Solve for x: |2x-3| = 7 | 5 or -5 |
| Solve for x: 2 < x+2 < 4 | 0 < x < 2 |
| Solve for y: -2y < 10 | y > -5 |