Trig Functions Word Scramble
|
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.
Normal Size Small Size show me how
Normal Size Small Size show me how
| Question | Answer |
| sin^2(x)+ cos^2(x) = _ | 1 |
| how to find the other pythag identities | divide sin^2x + cos^2x= 1 by sinx and cosx |
| tan(pi/2 - x) = _ | cotx |
| power reducing identity (sin) | sin^2 = [1 - cos(2x)]/2 |
| power reducing identity (cos) | cos^2 = [1+ cos(2x)]/2 |
| power reducing identity (tan) | tan^2 = [1 - cos(2x)] / [1+cos(2x)] |
| sin(A+B) = | sin(A)cos(B) + cos(A)sin(B) |
| cos(A+B) = | cosAcosB - sinAsinB |
| tan(A+B) = | (tanA + tanB)/1-tanAtanB |
| sin(A-B) = | sinAcosB - cosAsinB |
| cos(A-B) = | cosAcosB + sinAsinB |
| tan(A-B) = | (tanA - tanB) / (1 + tanAtanB) |
| sin(2A) = | 2sinAcosA |
| cos(2A) = | cos^2(A)- sin^2(A) |
| tan(2A) = | (2tanA)/(1 - tan^2(A)) |
| sin(1/2A) | Sqrt([1-cosA)/2] |
| cos(1/2A) | Sqrt[(1+cosA)/2] |
| tan(1/2A) | Sqrt[(1-cosA)/(1+cosB)] |
Created by:
leemr
Popular Math sets