click below
click below
Normal Size Small Size show me how
Trig Functions
Trig functions
| Question | Answer |
|---|---|
| sin^2(x)+ cos^2(x) = _ | 1 |
| how to find the other pythag identities | divide sin^2x + cos^2x= 1 by sinx and cosx |
| tan(pi/2 - x) = _ | cotx |
| power reducing identity (sin) | sin^2 = [1 - cos(2x)]/2 |
| power reducing identity (cos) | cos^2 = [1+ cos(2x)]/2 |
| power reducing identity (tan) | tan^2 = [1 - cos(2x)] / [1+cos(2x)] |
| sin(A+B) = | sin(A)cos(B) + cos(A)sin(B) |
| cos(A+B) = | cosAcosB - sinAsinB |
| tan(A+B) = | (tanA + tanB)/1-tanAtanB |
| sin(A-B) = | sinAcosB - cosAsinB |
| cos(A-B) = | cosAcosB + sinAsinB |
| tan(A-B) = | (tanA - tanB) / (1 + tanAtanB) |
| sin(2A) = | 2sinAcosA |
| cos(2A) = | cos^2(A)- sin^2(A) |
| tan(2A) = | (2tanA)/(1 - tan^2(A)) |
| sin(1/2A) | Sqrt([1-cosA)/2] |
| cos(1/2A) | Sqrt[(1+cosA)/2] |
| tan(1/2A) | Sqrt[(1-cosA)/(1+cosB)] |