click below
click below
Normal Size Small Size show me how
Physics-GS
Formulas and Units
| Question | Answer |
|---|---|
| Velocity - acceleration is constant | vf = vi + a t |
| Linear Displacement - acceleration constant | xf = vi t + 1/2 a t2 |
| Final Velocity | vf2 = vi2 + 2aΔx |
| Velocity Units | m/s or cm/s |
| Velocity Formula | Δx/Δt=V |
| Displacement formula | Δx = xf-xi |
| Vector x formula | Fx = F cosӨ |
| Vector y formula | Fy = F sinӨ |
| How to find Ө using x and y | Ө= tan–1(Fy/Fx) |
| Gravitational Formula | FG = GmM/r2 |
| Momentum Conservation Formula | m1v1 + m2v2= m1v1 + m2v2 (Elastic collisions) |
| Power Formula | P=w/t |
| Angular Momentum Formula | L = mvr= Iw L =angular momentum, m =mass of the small object m1v1 + m2v2 v =magnitude of object’s velocity r = separation between the objects |
| Centripetal Force Formula | F=mv2/r |
| Work formula | W = F d cosӨ W= -μkmgΔx W= TΔxcosӨ W = PΔt |
| Kinetic Energy Formula | KE = ½ mv2 ΔKE = fkd energy lost |
| Potential Energy Formula | PE = mgh (gravitational) |
| Formula for gravity (general) | gravity (general): GmM/r |
| Spring Formula - Potential Energy | PE = ½ kx2 (x from equilibrium) |
| Heat Formula | Q= cmΔT c=heat capacity of substance m=mass of substance Q=Quantity of heat |
| Change in energy formula | ΔE = Q + W W=work E=entropy |
| Simple Machine Formula - lever | Torque = lever arm x force |
| Spring Periodic Motion Formula | T=2π (SQRroot m/k) |
| Pendulum Formula | T=2π (SQRroot L/g) |
| Period of object | period = 1/frequency |
| Coulomb’s Law | Fc = kqQ/r2 FC (force between q and Q) |
| Force felt by Q formula | F = QE (actual force felt by Q) |
| Ohmas Law | VR = IR (VR = resistor’s voltage drop) |
| Series Resisters Formula | Rt = R1 + R2 |
| Parallel Resisters Formula | Rt= (1/R1 + 1/R2)–1 |
| Power Lost by each resister | PR = IR 2R = VR 2/R |
| Circular Motion | X = R Cos Ө Y = R Sin Ө |
| Circular Motion Velocity | V = 2πr/T V = SqRoot g R TAN Ө |
| Period Formula | T = mg/CosӨ T = mV2/R |
| Moon Gravity | 1/6 that of Earth |
| Weight Formula | W = mg |
| Distance for planets | d = D/(sqroot moon/M of earth) +1 |
| Newton's 3rd Law Formula | Fab = -Fba = W |
| Tension Formula | T - Fg = (Fg/g) a EF = T-Fg = ma |
| Acceleration with Tension | a = g(F-Fg)/Fg) a = g sin Ө N = -mg Cos Ө |
| Freefall formula Drop | Drop = Viy/(G/2) |
| Freefall formula Range | Range = (v2/g) sin 2V or d= 1/2 gt2 Max at 45 degrees |
| Projectile Formula X component | Vxf = Vxi Vf = Xi+VixΔt Vfx2 = vix2 |
| Projectile Formula y component | Vfy=Viy+2yΔt Yf = ViyΔt+1/2ay(Δt)2 Vfy2 = Viy2 + 2ayΔy |
| Projectile speed formula | Speed = sqroot Vx2+Vy2 |
| Friction Formula Kinetic | fk = μk N |
| Friction Formula Static | Fs < μsN |
| Friction acceleration Formulas | a = -μkgCos Ө + g Sin Ө |
| Drag Force formula | F draV2 Vr = Sqroot (2mg/CpA) |
| Terminal Velocity Formula | Vt = sqroot 2mg/CpA |
| Hook's Law (springs) | F = -kx |
| Work on a spring | Wspring = (kx2/2) - (kxi/2) |
| Power Formula | P = FV P (mgh)/(Δt) |
| Average Power Formula | Avg P = W/Δt |
| Power Units | J/s = 1W Joules per second = Watt 1 hp = 746 Watts |
| Earth Data | 6 X 10 24 Kg Radius 6 X 10 6 m |
| Univeral Gravitational Potential Energy | Ugrav = mgy ΔUgrav Ugrav = mg (d+h) mg (yf-yi) |
| Mechanical Energy | KE+PE = E |
| Four Forces | Gravity Electrical Magnetism Strong Nuclear Force Weak Nuclear Force |
| Kepler's Formula | T2/r3 |
| Orbital Motion | V = sqroot Gm/r satellite speed T2 = (4π2/Gm)r3 |
| Momentum Formula | ρ = mv Angular Momentum (ω) |
| Rotational Inertia Formula | Rotational Inertia = mr2 |
| Impulse formula | I = Ft I = Δp I = pf=pi change momentum F= Δp/Δt If no net force Δp = 0 |
| Elastic Collision formulas | Vif = (m1-m2/m1+m2) Vi V2f = (2mi/m1+m2)Vi Δp = 0 ΔE =0 |
| Inelastic collisions | h = 1/2 (m1+m2)Vf2/(m1+m2)g ΔP = 0 E not conserved |
| Harmonic Motion | 1/2kx2=1/2mv2 (pedulum) |
| Restore Force | ԐF = -kx restore ԐF = -k-x compression |
| Spring Acceleration | a = (k/m)x |
| Tangential SPeed | V = rω V = sqroot ((kx)/m ) |
| Potential Inertia -Pendulum | l = mv2 |
| Potential Inertia - Hoop | l= 1/2mr2 |
| Radian Measures | s/r =Ө or C=2πr s = arc length 1/2 circle = S= 1/2C = 180 degrees s/r = π 2π/360 = 1, 180= S/R = π, 90 = S = 1/4C, S = (30/60)C = 1/12, 360 = 2π |
| Center of Mass - Centripetal Force | F = mvr2/r |
| Linear Momentum | linear momentum = mv |
| angular momentum | angular momentum = mvr |
| Center of Mass | rcm = (m1r1+m2r2)/(m1+m2) |
| Revolution or cycle | n = S/C = S/(2πr) |
| Angular Velocity (ω) | ω= 2πf ω = r(ΔӨ/Δt) V = rω |
| Angular Velocity (ω) Units | 1/s or s-1 Hertz (Hz) = 1s-1 radian /s |
| Acceleration - using angular | a = v2/r a =rω2 |
| Force Normal - angular | FN = mg = Mrω2 ω = sqroot (g/r) |
| Revolution | T = period = 1 Revolution 1 rad/s = 9.55 r/min = 0.159 r/s |
| Torque | Ft=Mat = Mrα F = T r = R a = Iω |
| Moment of Inertia | I = mr2 |
| Rotational KE | KErot = 1/2Iω 2 KEtot = KEin+KEout = 1/2mV2+1/2Iω2 K = 1/2lω2 KE=1/2m(Rw)2 = circle |
| Angular Momentum | L =r(perpendicular)mv |
| Aphelion | V = r(perpendicular) ω Tangential SPeed V = rω Orbit speed |