click below
click below
Normal Size Small Size show me how
Jordan Math
Integrals and Derivative formula's
| Question | Answer |
|---|---|
| Derivative of Sinx | Cosx |
| Derivative of Tanx | (secx)^2 |
| Derivative of Secx | SecxTanx |
| Derivative of Cosx | -Sinx |
| Derivative of Cotx | -(Cscx)^2 |
| Derivative of Cscx | -(CscxCotx) |
| Integral of A^u | (1/ln(A))A^u |
| Integral of Tanu | -ln|cosu| |
| Integral of Cotu | ln|sinu| |
| Integral of Secu | ln|Secu+Tanu| |
| Integral of Cscu | -ln|Cscu+Cotu| |
| Integral of (1/sqr[A^2-u^2]) | Arcsin (u/a) |
| Integral of (1/[A^2+u^2]) | (1/A)Arctan(u/A) |
| Integral of (1/[u*sqr[u^2-A^2]]) | (1/A)Arcsec(|u|/A) |
| When doing the integral X^(n)e^(ax) what should your dv and u be? | u=X^(n) dv=e^(ax) |
| When doing the integral X^(n)Sin(ax) what should your dv and u be? | u=X^(n) dv=Sin(ax) |
| When doing the integral X^(n)Cos(ax) what should your dv and u be? | u=X^(n) dv=Cos(ax) |
| When doing the integral X^(n)ln(x) what should your dv and u be? | dv=X^(n) u=ln(x) |
| When doing the integral X^(n)arcsin(ax) what should your dv and u be? | dv=X^(n) u=arcsin(ax) |
| When doing the integral X^(n)arctan(ax) what should your dv and u be? | dv=X^(n) u=arctan(ax) |
| When doing the integral e^(ax)Sin(bx) what should your dv and u be? | u=Sin(bx) dv=e^(ax) |
| Derivative of Arcsin(u) | (u'/sqr[1-u^2]) |
| Derivative of Arccos(u) | (-u'/sqr[1-u^2]) |
| Derivative of Arctan(u) | (u'/1+u^2) |
| Derivative of Arcsec(u) | (u'/|u|sqr[u^2-1]) |