Question
click below
click below
Question
Normal Size Small Size show me how
Elementary Integrals
Basic calculus integrals
Question | Answer |
---|---|
∫(1/x)dx | ln|x|+C |
∫(e^x)dx | e^x+C |
∫(a^x)dx | (a^x)/(lna)+C |
∫sin(x)dx | -cos(x)+C |
∫cos(x)dx | sin(x)+C |
∫sec^2(x)dx | tan(x)+C |
∫csc^2(x)dx | -cot(x)+C |
∫sec(x)tan(x)dx | sec(x)+C |
∫csc(x)cot(x)dx | -csc(x)+C |
∫tan(x)dx | ln|sec(x)|+C |
∫cot(x)dx | ln|sin(x)|+C |
∫sec(x)dx | ln|sec(x)+tan(x)|+C |
∫csc(x)dx | ln|csc(x)-cot(x)|+C |
∫(1/sqrt(a^2-x^2))dx | sin^-1(x/a)+C |
∫(1/(a^2+x^2))dx | (1/a)tan^-1(x/a)+C |
∫(1/(a^2-x^2))dx | (1/2a)ln|(x+a)/(x-a)|+C |
∫(1/x(sqrt(x^2-a^2))dx | (1/a)sec^-1|x/a|+C |