click below
click below
Normal Size Small Size show me how
Calc 2 Integrals
| Question | Answer |
|---|---|
| Int[k] dx | kx+C |
| Int[x^n] dx | 1/(n+1) *x^(n+1)+C |
| Int[x^-1] dx | ln[x]+C |
| Int[e^(ax)] dx | 1/a *e^(ax)+C |
| Int[sin(ax)] dx | -1/a *cos(ax)+C |
| Int[cos(ax)] dx | 1/a *sin(ax)+C |
| Int[sec^2(ax)] dx | 1/a *tan(ax)+C |
| Int[csc^2(ax)] dx | -1/a *cot(ax)+C |
| Int[sec(ax)tan(ax)] dx | 1/a *sec(ax)+C |
| Int[csc(ax)cot(ax)] dx | -1/a *csc(ax)+C |
| Int[1/(1+x^2)] dx | arctan(x)+C |
| Int[1/sqrt(1-x^2)] dx | arcsin(x)+C |
| Int[tan(ax)] dx | -1/a *ln[cos(ax)]+C |
| Int[cot(ax)] dx | 1/a *ln[sin(ax)]+C |
| Int[sec(ax)] dx | 1/a *ln[sec(ax)+tan(ax)]+C |
| Int[csc(ax)] dx | -1/a *ln[csc(ax)+cot(ax)]+C |
| Cos^2(x)+Sin^2(x) | 1 |
| 1+tan^2(x) | sec^2(x) |
| 1+cot^2(x) | csc^2(x) |
| cos^2(x) | 1/2+1/2cos(2x) |
| sin^2(x) | 1/2-1/2cos(2x) |