click below
click below
Normal Size Small Size show me how
AP physics
| Question | Answer |
|---|---|
| When you don't know distance | v_f=v_i+at |
| When you don't know final velocity | x_f=x_i+v_i*t+1/2*a*t^2 |
| When you don't know time | v_f^2=v_i^2+2a(x_f-x_i) |
| Net force | F_net=ma |
| Net force vectors | F_net_x=ma_x F_net_y=ma_y |
| Kinetic friction force | F_k=μ_k*N |
| Static friction force | F_s=μ_s*N |
| Which is always bigger | μ_s > μ_k |
| Parallel component | F_g_x=mg*sinθ |
| Perpendicular component | F_g_y=mg*cosθ |
| Normal force | N=mg*cosθ |
| Kinetic or Static fiction force on a slope | F_k=μ*mg*cosθ |
| Atwood machine when m_1 > m_2 | a=(m_1-m_2)g/(m_1+m_2) |
| Critical angle | tan⁻¹(μ_s) |
| Normal force symbol | N |
| Tension force symbol | T |
| Friction force symbol | F_f |
| Applied force symbol | F_app |
| If no motion in a direction | a=0, so F_net=0 |
| Connected objects total mass | Total mass= sum of all masses |
| Connected objects acceleration | a=F_external/m_total |
| Individual approach F | Apply F=ma to each |
| F_app pulling at an angle upwards vertical component | F_app*sinθ (reduces N) |
| F_app pulling at an angle upward normal force | N=mg-F_app*sinθ |
| F_app pulling at an angle upward force of kinetic or static friction | F_f=μ(mg-F_app*sinθ) (less friction) |
| F_app pulling at an angle downwards vertical component | F_app*sinθ (increases N) |
| F_app pulling at an angle downward normal force | N=mg+F_app*sinθ |
| F_app pulling at an angle downward force of kinetic or static friction | F_f=μ(mg+F_app*sinθ) (more friction) |
| Elevator constant speed | T=mg |
| Elevator accelerating up | T=m(g+a) (heavier) |
| Elevator accelerating down | T=m(g-a) (lighter) |
| Free fall | T=0 |
| Newtons 3rd law, forces come in pair | Equal magnitude, Opposite direction, and acts on different objects |
| Spring constant symbol | k |
| Spring force | F_s=k*x |
| Spring constant | k=F_s/x |
| Spring series | k_total=(1/k_1)+(1/k_2) |
| Spring parallel | k_total=k_1+k_2 |
| Static equilibrium net force components | F_nety=T_1y+T_2y=mg F_netx=T_1x=T_2x |
| Static equilibrium net force cos and sin | T_1*sinθ_1+T_2*sinθ_2=mg T_1*cosθ_1=T_2*cosθ_2 |