click below
click below
Normal Size Small Size show me how
Geometry
All Vocab
| Term | Definition |
|---|---|
| Adjacent Angles | 2 angles that share a common side and vertex |
| Angle Bisector | a line or ray that divides an angle into 2 equal parts |
| Supplementary Angles | 2 angles with measures that add up to 180 |
| Complementary Angles | 2 angles with measures that add up to 90 |
| Substitution Property | if a=b then a can be replaced by b |
| Transitive Property | if a=b and b=c then a=c |
| Distance Formula | square root (x2-x1)2+(y2-y1)2 |
| Midpoint Formula | x1+x2/2 , y1+y2/2 |
| Partitioning a Segment Formula | (K(x2-x1)+x , k(y2-y1)+y1) |
| Vertical Angles Theorem | if 2 angles are vertical then they are congruent |
| Complement Theorem | if 2 angles form a right angle then they are complementary |
| Linear Pair Theorem | if 2 angles form a linear pair then they are supplementary |
| Congruent Complements Theorem | if 2 angles are complementary to the same angle then they are congruent |
| Congruent Supplements | if 2 angles are supplementary to the same angle then they are congruent |
| Corresponding Angles | angles that are on the same side of the transversal and in the same position |
| Alternate Interior Angles | interior angles, non-adjacent, and on opposite sides of the transversal |
| Alternate Exterior Angles | exterior angles, non-adjacent, and on opposite sides of the transversal |
| Consecutive Interior Angles | interior angles that are on the same side of the transversal |
| Consecutive Exterior Angles | exterior angles that are on the same side of the transversal |
| SSS | 3 pairs of congruent sides |
| SAS | 2 sides and an included angle are congruent |
| ASA | 2 angles and an included side are congruent |
| HL | the hypotenuse and any one leg of a right triangle are congruent |
| CPCTC | corresponding parts of congruent triangles are congruent |