click below
click below
Normal Size Small Size show me how
TRIG exam 2
| Question | Answer |
|---|---|
| Identify the conic section: a=b | circle |
| Identify the conic section: a≠b same sign | elipse |
| Identify the conic section: a and b opposite signs | hyperbola |
| Identify the conic section: if a=0 or b=0 | parabola |
| Converting coordinates Cartesian to Cylindrical: find r (Radius) | r^2 = a^2+b^2 |
| Converting coordinates Cartesian to Cylindrical: find 𝚹 | arctan(y/x) = 𝚹 |
| Converting coordinates Cartesian to Cylindrical: z | z is the same |
| Cylindrical Coordinates | (r, 𝚹, z) |
| Spherical Coordinates | (⍴, 𝚹, ɸ) |
| Converting coordinates Cartesian to Spherical: find ⍴ | sq rt (x^2 + y^2 + z^2) |
| Converting coordinates Cartesian to Spherical: find 𝚹 | arctan(y/x) = 𝚹 |
| Converting coordinates Cartesian to Spherical: find ɸ | arccos (z/⍴) |
| Transformations of graphs: vertical shift up | y = f(x) + k |
| Transformations of graphs: vertical shift down | y = f(x) - k |
| Transformations of graphs: shift left | y = f(x+h) |
| Transformations of graphs: shift right | y = f(x-h) |
| Transformations of graphs: compress | y = f(xh) |
| Transformations of graphs: stretch | y = f(x/h) |
| Graphing Parabola: vetex | ( h , k ) |
| Graphing Parabola: focus on a vertical parabola | ( h, k +- p ) |
| Graphing Parabola: focus on a horizontal parabola | ( h +- p , k ) |
| Graphing Parabola: directirix on a vertical parabola | y = k +- p |
| Graphing Parabola: directirix on a horizontal parabola | y = h +- p |
| Graphing Parabola: parabola opens left/right | (y - k )^2 = 4p ( x - h ) |
| Graphing Parabola: parabola opens up/down | ( x - h )^2 = 4p( y - k ) |
| Parabola graphing form | (x - h)^2 = 4p ( y - k ) |
| Graphing Hyperbola: if the x term is first, | it opens on the x axis |
| Graphing Hyperbola: if the y term is firat, | it opens on the y axis |
| Graphing Hyperbola: a | is the distance from the center to the vertex |
| Graphing Hyperbola: c | is the distance from the center to the focus |