click below
click below
Normal Size Small Size show me how
Interviews
| Question | Answer |
|---|---|
| Bernoulli's | P + 0.5*p*v**2 + p*g*h = Ptot |
| Mass Flow | mdot = p*v*A |
| Cantilever Beam Stress | m*c/I |
| Cantilever Beam Deformation | F*L**3 / 3*E*I |
| Second Moment of Area | I, equations vary from shape to shape for squares b*h**3 / 12 |
| Conservation of Mass and Momentum | mdot*vi - mdot*vf = delta Momentumn = Pi*Ai - Pf*Af |
| Conservation of Energy | pf*hTf*vf*Af - pi*hTi*vi*Ai = dQ/dt + Wdot rho*Cp*T + 0.5*rho*v^2 = constant |
| Dynamic Pressure | 0.5*p*v**2 = q = gamma*p*M**2 /2 = kenetic energy per volume |
| Hydraulic Head | P/p*g + v**2 / 2*g + Z = Ptot/p*g = Head |
| H - Enthalpy | Total working energy in a fluid |
| Specific Heat | Q = m*Cp*dT |
| Speed of sound | a = sqrt(gamma*R*T) = sqrt(gamma*P/p) |
| Pressure and Density Relation in an ideal gas isentropic flow | P/p**gamma = const = P0/p0**gamma |
| Stagnation Temperature Ratio Relations | P/P0 = (p/p0)**gamma = (T/T0) ** (gamma/(gamma-1)) |
| Reynold's Number | p*v*D/mew |
| Laminar Flow | Re <= 2100 |
| Turbulent Flow | Re >= 2100 |
| Discharge Coefficient | Cd = mdot/(A*sqrt(2*p*(P2-P1))) |
| Flow Coefficient | Cv = Q*sqrt(SG/dP), SG- Specific Gravity for water is 1 |
| Area Mach Relation | dA/A = (M**2 - 1)dv/v |
| Pressure Loss in Laminar Flow (Darcy Weiback) | dP = f * (L/D) * 0.5*p*v**2 |
| Mass Spring Natural Frequency (massless spring) | w = sqrt(K/m)/2*pi (Hz) = sqrt(K/m) (rad/s) |
| Mass Spring Natural Frequency (Massive spring) | w = sqrt(K/m+ms/3)/2*pi |
| Work | Energy = int(fdx) |
| Spring Energy | Es = 1/2 kx**2 |
| Internal Energy | U = mCvT |
| Enthalpy | h = mCpT |
| Euler's Buckling Equation | n*pi**2 * E * I / L**2 |
| n in Euler's Buckling Equation | pinned-pinned: 1 pinned-fixed: 2 fixed-fixed: 4 fixed-free:0.25 |
| Torque Equation | T = I*alpha |
| Bolt Preload Equation | T = F*K*e(minor diameter) |
| Von Mises Stress Equation | sig = sq((sig1-sig2)^2 + (sig2-sig3)^2 + (sig3-sig1)^2) |
| Single Pin Shear | Tav(Average Shear Stress) = V/Apin T Tmax = (4/3)*(V/A) (Solid Cyinlder) Tmax = 2*(V/A) (Hollow Cyinder) Tmax = (3/2)*(V/A) (Square Beam) |
| Dual Pin Shear | Divide shear force by 2 in single pin shear |
| Lap Joint Weld Stress | T = V/(W*t/sqrt(2)) (Draw) |
| Thick walled pressure vessel hoop stress | sig = (PRo^2 + PRi^2)/(PRo^2 - PRi^2) |
| Ideal Gas compressibility factor usage | When P>1000psi and T<-100F |
| Pstar/Pinf (Chocked Flow) | Chocked if Pstar/Pinf >= (0.5*(gamma+1))^(gamma/(gamma-1)) |
| Thrust Equation | T = mdot*Ve + (Pe-Pinf)*Ae T = ISP*mdot*g |
| Rocket Eq | dv = ve * ln(Minitial / Mfinal) |
| Bearing Stress | Drawing |
| Shear Tear Out | T = F/(2*e*t) |
| 2nd Moment of Area | Cylinder: (pi/64)*D^4 Hollow Cylinder: (pi/4)*(Ro^4 - Ri^4) Rectangle: (bh^3)/12 |
| 316 Stainless Steel Imperial | Density: 0.289 lb/in³ UTS: 84100 psi YS: 42100 psi E: 28000 ksi CTE(0-600F): 9 µin/in-°F Cp: 0.12 BTU/lb-°F Melting Point: 2500F Thermal Conductivity: 113 BTU-in/hr-ft²-°F |
| 316 Stainless Steel Metric | Density: 8 g/cc UTS: 580 MPa YS: 290 MPa E: 193 GPa CTE(0-600F): 16.2 µm/m-°C Cp: 0.5 J/g-°C Melting Point: 1390°C Thermal Conductivity: 16.3 W/m-K |
| 304 Stainless Steel Imperial | Density: 0.289 lb/in³ UTS: 73200 psi YS: 31200 psi E: 28500 ksi CTE(0-600F): 9.89 µin/in-°F Cp: 0.12 BTU/lb-°F Melting Point: 2550F Thermal Conductivity: 112 BTU-in/hr-ft²-°F |
| 304 Stainless Steel Metric | Density: 8 g/cc UTS: 505 MPa YS: 215 MPa E: 193 GPa CTE(0-600F): 17.8 µm/m-°C Cp: 0.5 J/g-°C Melting Point: 1400°C Thermal Conductivity: 16.2 W/m-K |
| AL6061 Imperial | Density: 0.0975 lb/in³ UTS: 45000 psi YS: 40000 psi E: 10000 ksi CTE(0-600F): 14 µin/in-°F Cp: 0.214 BTU/lb-°F Melting Point: 1100F Thermal Conductivity: 1160 BTU-in/hr-ft²-°F |
| AL6061 Metric | Density: 2.7 g/cc UTS: 310 MPa YS: 276 MPa E: 68.9 GPa CTE(0-600F): 25.2 µm/m-°C Cp: 0.896 J/g-°C Melting Point: 600°C Thermal Conductivity: 167 W/m-K |
| AL7075 Imperial | Density: 0.102 lb/in³ UTS: 83000 psi YS: 73000 psi E: 10400 ksi CTE(0-600F): 14 µin/in-°F Cp: 0.229 BTU/lb-°F Melting Point: 1000F Thermal Conductivity: 900 BTU-in/hr-ft²-°F |
| AL7075 Metric | Density: 2.81 g/cc UTS: 572 MPa YS: 503 MPa E: 71.7 GPa CTE(0-600F): 25.2 µm/m-°C Cp: 0.96 J/g-°C Melting Point: 550°C Thermal Conductivity: 130 W/m-K |
| Inconel 718 Imperial | Density: 0.296 lb/in³ UTS: 199000 psi YS: 160000 psi E: CTE(0-600F): 7.22 µin/in-°F Cp: 0.104 BTU/lb-°F Melting Point: 2300 - 2440 °F Thermal Conductivity: 79.1 BTU-in/hr-ft²-°F |
| Inconel 718 Metric | Density: 8.19 g/cc UTS: 1375 MPa YS: 1100 MPa E: CTE(0-600F): 13 µm/m-°C Cp: 0.435 J/g-°C Melting Point: 1260 - 1336 °C Thermal Conductivity: 11.4 W/m-K |
| Inconel 625 Imperial | Density: 0.305 lb/in³ UTS: 128000 psi YS: 66700 psi E: CTE(0-600F): 7.11 µin/in-°F Cp: 0.098 BTU/lb-°F Melting Point: 2350 - 2460 °F Thermal Conductivity: 68 BTU-in/hr-ft²-°F |
| Inconel 625 Metric | Density: 8.44 g/cc UTS: 880 MPa YS: 460 MPa E: CTE(0-600F): 12.8 µm/m-°C Cp: 0.41 J/g-°C Melting Point: 1290 - 1350 °C Thermal Conductivity: 9.8 W/m-K |
| Mig Welding | Metal inert gas aka GMAW, is when the filler and the electrode are the same material the filler wire is fed thru a mig gun where it is shielded by a gas and the wire itself produces the arc and also becomes the filler metal. |
| Tig Welding | WIth TIG, GTAW, welding a tungsten electrode shielded by a gas (usually argon) generates the heat that produces the weld puddle. If filler metal is used, it is added separately either by hand or by a mechanized feeder. |
| Stick Welding | WIth stick welding a tungsten electrode generates the heat that produces the weld puddle. If filler metal is used, it is added separately either by hand or by a mechanized feeder. |
| Laser Welding | Shoot laser at metal. Deeper and less heat effected zone. Good for automated practices. |
| Oribital | TIG welding automated in a circle in order to account for surface tension and gravity |
| Conduction | Qdot = k*A/L * (T2-T1) |
| Convection | Qdot = h*A*(T2-T1) |
| Radiation Out | Qdot = A*sig*e*(T2-T1)**4 |
| Radiation In | Qdot = S*A*alpha*sin(theta) |
| Newtons Law of Cooling | T(t) = Tinf + (T(0) - Tinf)*e**(-t/tau) |
| Torsional Stress | tau = Torque*r/J(Polar Moment of Inertia) |