click below

click below

Normal Size Small Size show me how

# Calc Deriv Rules

### Derivative Rules For Calc 1

Question | Answer |
---|---|

(d/dx) | e^x |

Product Rule | F' = u'*v + v'*u |

Quotient Rule | (vu'-uv')/v^2 |

(d/dx) sinx | cos x |

(d/dx) cosx | -sinx |

(d/dx) tanx | sec^2 (x) |

(d/dx) cotx | -csc^2 (x) |

(d/dx) secx | secx * tanx |

(d/dx) cscx | -casx * cotx |

Chain Rule | F’(x) = f’(g(x))g’(x) |

(d/dx) a^x | a^x * ln(a) |

(d/dx) sin^-1 | 1/sqrt(1-x^2) |

(d/dx) cos^-1 | -1/sqrt(1-x^2) |

(d/dx) tan^-1 | 1/sqrt(1+x^2) |

(d/dx) csc^-1 | -1/(x * sqrt(x^2 - 1) |

(d/dx) sec^-1 | 1/(x * sqrt(x^2 - 1) |

(d/dx) cot^-1 | -1(1+x^2) |

(d/dx) log a (x) | 1/(x*ln(a)) |

(d/dx) ln x | 1/x |

(d/dx) sinh x | cosh x |

(d/dx) cosh x | sinh x |

(d/dx) tanh x | sech^2 x |

(d/dx) csch x | -csch x * coth x |

(d/dx) sech x | -sech x * tanh x |

(d/dx) coth x | -csc^2 x |