or

or

taken

why

Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.

Don't know
Know
remaining cards
Save
0:01
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

Normal Size     Small Size show me how

# Geometry Honors

### Geometry Honors Module 4 Vocab

TermDefinition
Vertical angles The opposite angles when two lines intersect.
The Vertical Angles Theorem If two angles are vertical angles, then the angles are congruent.
Supplementary angles Two angles whose measures have a sum of 180 degrees.
Complementary angles Two angles whose measures have a sum of 90 degrees.
Supplement The number that is missing from 180 degrees. (180 - x = s)
Complement The number that is missing from 90 degrees. (90 - x = c)
Parallel lines Coplanar lines that do not intersect.
Transversal A line that intersects two coplanar lines at two different points.
Corresponding angles Angles that lie on the same side of a transversal and on the same sides of the intersected lines.
Same-side interior angles Angles that lie on the same side of a transversal and between the intersected lines.
Alternate interior angles Nonadjacent angles that lie on opposite sides of a transversal between the intersected lines.
Alternate exterior angles Angles that lie on opposite sides of a transversal and outside the intersected lines.
Same-Side Interior/Exterior Angles Postulate If two parallel lines are cut by a transversal, then the pairs of same -side interior/exterior angles are supplementary.
Alternate Interior/Exterior Angles Theorem If two parallel lines are cut by a transversal, then the pairs of alternate interior/exterior angles have the same measure.
Corresponding Angles Theorem If two parallel lines are cut by a transversal, then the pairs of corresponding angles have the same measure.
Created by: prettyinpurple