click below
click below
Normal Size Small Size show me how
Differentials
| Question | Answer |
|---|---|
| d/dx sin(x) | cos(x) |
| d/dx cos(x) | -sin(x) |
| d/dx tan(x) | sec^2(x) |
| d/dx cot(x) | -cosec^2(x) |
| d/dx sec(x) | sec(x)tan(x) |
| d/dx csc(x) | -csc(x)cot(x) |
| d/dx sinh(x) | cosh(x) |
| d/dx tanh(x) | sech^2(x) |
| d/dx coth(x) | -cosech^2(x) |
| d/dx sech(x) | -sech(x)tanh(x) |
| d/dx csch(x) | -csch(x)coth(x) |
| d/dx arcsin(x) | 1/(sqrt(1-x^2)) |
| d/dx arccos(x) | -1/(sqrt(1-x^2)) |
| d/dx arctan(x) | 1/(1+x^2) |
| d/dx arccot(x) | -1/(1+x^2) |
| d/dx arcsec(x) | 1/(x*sqrt(x^2-1)) |
| d/dx arccosec(x) | 1/(|x|*sqrt(x^2-1)) |
| d/dx arcsinh(x) | 1/(sqrt(1+x^2)) |
| d/dx arccosh(x) | 1/(sqrt(x^2-1)) |
| d/dx arctanh(x) | 1/(1-x^2) |
| d/dx arccoth(x) | 1/(1-x^2) |
| d/dx arccosech(x) | -1/(|x|*sqrt(1+x^2)) |
| d/dx arcsech(x) | -1/(x*sqrt(1-x^2)) |