click below

click below

Normal Size Small Size show me how

# Properties Vocab Ex

### Match the Mathematical Properties with an Example

Property | Example |
---|---|

Additive Identity Property | -9 + 0 = -9 |

Additive Inverse Property | 12 + (-12) = 0 |

Associative Property | 4 + (-3 + 2) = (4 + -3) + 2 |

Commutative Property | 9 x (-4) = -4 x 9 |

Distributive Property | -8 (3 + 6) = -8 x 3 + (-8) x 6 |

Multiplicative Identity Property | -9 x 1 = -9 |

Multiplicative Inverse Property | 9 x 1/9 = 1 |

Multiplicative Property of Zero | 19 x 0 = 0 |

Substitution Property | If a = b, then a + c = b + c |

Addition Property of Inequality | If a < b, then a + c < b + c |

Additive Identity Property | 0 + 3 = 3 |

Additive Inverse Property | -30 + 30 = 0 |

Associative Property | (6 x 3) x -2 = 6 x (3 x -2) |

Commutative Property | -8 + (-2) = -2 + (-8) |

Distributive Property | 6 (7 - 2) = 6 x 7 - 6 x 2 |

Multiplicative Identity Property | 1 x 27 = 27 |

Multiplicative Inverse Property | 1/6 x 6 = 1 |

Multiplicative Property of Zero | 0 x (-4) = 0 |

Substitution Property | If a = b, then a - c = b - c |

Subtraction Properties of Inequality | If a < b, then a - c < b - c |

Substitution Property | If a = b, then a * c= b * c |

Multiplication Property of Inequality | If a < b, then a * c < b * c (if c >0) |

Substitution Property | If a = b, then a / c = b / c (if c does not equal 0) |

Division Property of Inequality | If a < b, then a / c < b / c (if c>0) |

Multiplication Property of Inequality | If a < b, then a * c > b * c (if c <0) |

Division Property of Inequality | If a < b, then a / c > b / c (if c<0) |