click below
click below
Normal Size Small Size show me how
Properties Vocab Ex
Match the Mathematical Properties with an Example
| Property | Example |
|---|---|
| Additive Identity Property | -9 + 0 = -9 |
| Additive Inverse Property | 12 + (-12) = 0 |
| Associative Property | 4 + (-3 + 2) = (4 + -3) + 2 |
| Commutative Property | 9 x (-4) = -4 x 9 |
| Distributive Property | -8 (3 + 6) = -8 x 3 + (-8) x 6 |
| Multiplicative Identity Property | -9 x 1 = -9 |
| Multiplicative Inverse Property | 9 x 1/9 = 1 |
| Multiplicative Property of Zero | 19 x 0 = 0 |
| Substitution Property | If a = b, then a + c = b + c |
| Addition Property of Inequality | If a < b, then a + c < b + c |
| Additive Identity Property | 0 + 3 = 3 |
| Additive Inverse Property | -30 + 30 = 0 |
| Associative Property | (6 x 3) x -2 = 6 x (3 x -2) |
| Commutative Property | -8 + (-2) = -2 + (-8) |
| Distributive Property | 6 (7 - 2) = 6 x 7 - 6 x 2 |
| Multiplicative Identity Property | 1 x 27 = 27 |
| Multiplicative Inverse Property | 1/6 x 6 = 1 |
| Multiplicative Property of Zero | 0 x (-4) = 0 |
| Substitution Property | If a = b, then a - c = b - c |
| Subtraction Properties of Inequality | If a < b, then a - c < b - c |
| Substitution Property | If a = b, then a * c= b * c |
| Multiplication Property of Inequality | If a < b, then a * c < b * c (if c >0) |
| Substitution Property | If a = b, then a / c = b / c (if c does not equal 0) |
| Division Property of Inequality | If a < b, then a / c < b / c (if c>0) |
| Multiplication Property of Inequality | If a < b, then a * c > b * c (if c <0) |
| Division Property of Inequality | If a < b, then a / c > b / c (if c<0) |