click below
click below
Normal Size Small Size show me how
Trig IDs + d/dx's
side_1 | side_2 |
---|---|
d/dx(tan(x)) | sec^2(x) |
d/dx(csc(x)) | -csc(x)cot(x) |
d/dx(sec(x)) | sec(x)tan(x) |
d/dx(cot(x)) | -csc^2(x) |
d/dx(arcsin(x)) | (1 - x^2)^(-1/2) |
d/dx(arccos(x)) | -(1 - x^2)^(-1/2) |
d/dx(arctan(x)) | (1 + x^2)^(-1) |
d/dx(arccsc(x)) | -(|x| * (x^2 - 1)^(1/2))^(-1) |
d/dx(arcsec(x)) | -(|x| * (x^2 - 1)^(1/2))^(-1) |
d/dx(arccot(x)) | -(1 + x^2)^(-1) |
sin^2(x) + cos^2(x) = | 1 |
1 + tan^2(x) = | sec^2(x) |
1 + cot^2(x) = | csc^2(x) |
sin(pi/2 - x) = ; csc(pi/2 - x) = | cos(x) ; sec(x) |
cos(pi/2 - x) = ; sec(pi/2 - x) = | sin(x) ; csc(x) |
tan(pi/2 - x) = ; cot(pi/2 - x) = | cot(x) ; tan(x) |
sin(-x) = ; csc(-x) = | -sin(x) ; -csc(x) |
cos(-x) = ; sec(-x) = | cos(x) ; sec(x) |
tan(-x) = ; cot(-x) = | -tan(x) ; -cot(x) |
sin(x +- y) = | sin(x)cos(y) +- cos(x)sin(y) |
cos(x -+ y) = | cos(x)cos(y) -+ sin(x)sin(y) |
tan(x +- y) = | (tan(x) +- tan(y))/(1 -+ tan(x)tan(y)) |
sin(2x) = | 2sin(x)cos(x) |
cos(2x) = | cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) |
tan(2x) = | (2tan(x))/(1 - tan^2(x))) |
sin^2(x) = | (1 - cos(2x))/2 |
cos^2(x) = | (1 + cos(2x))/2 |
tan^2(x) = | (1 - cos(2x))/(1 + cos(2x)) |
sin(x) + sin(y) = | 2sin((x + y)/2)cos((x - y)/2) |
sin(x) - sin(y) = | 2cos((x + y)/2)sin((x - y)/2) |
cos(x) + cos(y) = | 2cos((x + y)/2)cos((x - y)/2) |
cos(x) - cos(y) = | 2sin((x + y)/2)sin(x - y)/2) |
sin(x)sin(y) = | (cos(x - y) - cos(x + y))/2 |
cos(x)cos(y) = | (cos(x - y) + cos(x + y))/2 |
sin(x)cos(y) = | (sin(x + y) + sin(x - y))/2 |
cos(x)sin(y) = | (sin(x + y) - sin(x - y))/2 |