Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

Normal Size Small Size show me how

Normal Size Small Size show me how

# Trigonometric Id.

### Formula

Theorems/Properties | Formulas/Definitions |
---|---|

Even/Odd Identities. | cos (-u) = cos(u) and sec(-u) = sec(u). the remaining 4 are odd functions. |

Sum and difference identities for cosine. | cos(a+b) = cos(a)cos(b) - sin(a)sin(b). cos(a-b) = cos(a)cos(b) + sin(a)sin(b). |

Sum and difference identities for sine. | sin(a+b) = sin(a)cos(b) + cos(a)sin(b). sin(a-b) = sin(a)cos(b) - cos(a)sin(b). |

Cofunction identities. | cos(pi/2 - u) = sin(u) and sin(pi/2 - u) = cos(u). sec(pi/2 - u) = csc(u) and csc(pi/2 - u) = sec(u). tan(pi/2 - u) = cot(u) and cot(pi/2 - u) = tan(u). |

Double angle identity. | cos(2x) = cos² - sin²(x). sin(2x) = 2*sin(x)cos(x). tan(2x) = (2*tan(x))/(1 - tan²(x)). |

Power reduction formulas. | cos²(x) = (1/2)*(1 + cos(2x)). sin²(x) = (1/2)*(1 - cos(2x)). |

Half angle formulas. | cos(x/2) = -/+ sqrt[(1/2)*(1 + cos(x))]. sin(x/2) = -/+ sqrt[(1/2)*(1 - cos(x))]. tan(x/2) = -/+ sqrt[(1 - cos(x))/(1 + cos(x))]. |

Sum to product formulas. | cos(a) + cos(b) = 2*cos[(1/2)*(a + b)]*cos[(1/2)*(a - b)]. cos(a) - cos(b) = -2*sin[(1/2)*(a + b)]*sin[(1/2)*(a - b)]. sin(a) +/- sin(b) = 2*sin[(1/2)*(a +/- b)]*cos[(1/2)*(a -/+ b)]. |

Product to sum formulas. | cos(a)cos(b) = (1/2)*[cos(a - b) + cos( a + b)]. sin(a)sin(b) = (1/2)*[cos(a - b) - cos(a + b)]. sin(a)cos(b) = (1/2)*[sin(a - b) + sin(a + b)]. |

Created by:
JuniorDBlackbone