click below
click below
Normal Size Small Size show me how
Basic Trig Ids
Reciprocal/Quotient/Pythagorean/Cofunction/Even&Odd Identities
| Question | Answer |
|---|---|
| sin^2(x) + cos^2(x) | 1 |
| 1 + cot^2(x) | csc^2(x) |
| tan^2(x) + 1 | sec^2(x) |
| sinx/cosx | tanx |
| cosx/sinx | cotx |
| 1/cosx | secx |
| 1/sinx | cscx |
| 1/tanx | cotx |
| 1/secx | cosx |
| 1/cscx | sinx |
| 1/cotx | tanx |
| cos(-x) | cosx |
| sin(-x) | -sinx |
| tan(-x) | -tanx |
| sec(-x) | secx |
| csc(-x) | -cscx |
| cot(-x) | -cotx |
| sin(90 - x) | cosx |
| cos(90 - x) | sinx |
| tan(90 - x) | cotx |
| cot(90 - x) | tanx |
| sec(90 - x) | cscx |
| csc(90 - x) | secx |
| 1 - sin^2(x) | cos^2(x) |
| 1 - cos^2(x) | sin^2(x) |
| csc^2(x) - cot^2(x) | 1 |
| csc^2(x) - 1 | cot^2(x) |
| sec^2(x) - 1 | tan^2(x) |
| sec^2(x) - tan^2(x) | 1 |
| sin(x - 90) | sin[-(90 - x)] = -sin(90 - x) = -cosx |
| cos(x - 90) | cos[-(90 - x)] = cos(90 - x) = sinx |
| tan(x - 90) | tan[-(90 - x)] = -tan(90 - x) = -cotx |