click below

click below

Normal Size Small Size show me how

# CRChem1Ch11VocabNew

### CRChem1Ch11VocabularyNew

Question | Answer |
---|---|

force per unit area acting on a surface | pressure |

SI unit of force; force that will increase the speed of a 1 kg mass by 1 m/s for each second that it is applied | Newton |

device used to measure atmospheric pressure | barometer |

common unit of pressure | millimeters of mercury; mm Hg |

exactly equivalent to 760 mm Hg | atmosphere of pressure |

pressure exerted by a force of 1 Newton acting on an area of one square meter | Pascal |

the pressure of each gas in a mixture | partial pressure |

the total pressure of a mixture of gases is equal to the sum of the partial pressures of the component gases | Dalton's Law of Partial Pressures |

volume of a fixed mass of a gas at constant temperature varies inversely with pressure | Boyle's Law |

temperature of -273.15 degrees Celsius, given a value of zero on the Kelvin scale; temperature at which the motion of all particles stops | absolute zero |

volume of a fixed mass of a gas at constant pressure varies directly with the Kelvin temperature | Charles' Law |

the pressure of a fixed mass of gas at constant volume varies directly with the Kelvin temperature | Gay-Lussac's Law |

relationship between the temperature, pressure, and volume of a fixed amount of gas | combined gas law |

at constant temperature and pressure, the volumes of gaseous reactants and products can be expressed as ratios of small whole numbers | Gay-Lussac's Law of Combining Volumes of Gases |

equal volumes of gases at the same temperature and pressure contain equal numbers of molecules | Avogadro's Law |

the volume occupied by one mole of a gas at STP | standard molar volume of a gas |

the mathematical relationship among pressure, volume, temperature, and the number of moles of a gas | ideal gas law |

in the ideal gas law equation, it is R | ideal gas constant |

the rates of effusion of gases at the same temperature and pressure are inversely proportional to the square roots of their molar masses | Graham's Law of Effusion |