click below
click below
Normal Size Small Size show me how
Trig Domain and R
Trig Graphs and Domain & Range and inverse
| Question | Answer |
|---|---|
| sin θ Domain | All Real Number |
| Sin θ Range | {y∣-1≤y≤1} |
| Cos θ Domain | All Real Number |
| Cos θ Range | {y∣-1≤y≤1} |
| Tan θ Domain | {θ∣θ≠-3π/2,-π/2,π/2,3π/2 |
| Tan θ Range | All Real number |
| Sec θ Domain | {θ∣θ≠-3π/2,-π/2,π/2,3π/2} |
| Sec θ Range | {y∣-1≤ or y≥1} |
| Csc θ Domain | {θ∣θ≠-2π,-π,0,π,2π} |
| Csc θ Range | {y∣-1≤ or y≥1} |
| Cot θ Domain | {θ∣θ≠-2π,-π,0,π,2π} |
| Cot θ Range | All Real Number |
| 〖Sin〗^(−1) Domain | -1≤x≤1 |
| 〖Sin〗^(−1) Range | -π/2≤〖Sin〗^(−1)x ≤ π/2 |
| 〖Cos〗^(−1) Domain | -1≤x≤1 |
| 〖Cos〗^(−1) Range | 0≤〖Cos〗^(−1)x ≤ π |
| 〖Tan〗^(−1) Domain | -∞"<x<"∞ |
| 〖Tan〗^(−1) Range | -π/2≤〖Tan〗^(−1)x ≤ π/2 |
| 〖Csc〗^(−1) Doain | {-∞<x≤-1}U{1≤x<∞} |
| 〖Csc〗^(−1) Range | -π/2≤〖Csc〗^(−1)x ≤ π/2,〖Csc〗^(−1)x≠θ |
| 〖Sec〗^(−1) Domain | {-∞<x≤-1}U{1≤x<∞} |
| 〖Sec〗^(−1) Range | 0≤〖Sec〗^(−1)x ≤ π,〖Sec〗^(−1)x≠ π/2 |
| 〖Cot〗^(−1) Domain | -∞<x<∞,x ≠ 0 |
| 〖Cot〗^(−1) Range | -π/2<〖Cot〗^(−1)x< π/2,〖Cot〗^(−1)x≠θ |