click below
click below
Normal Size Small Size show me how
Test 2
2.2 - 2.6
| Question | Answer |
|---|---|
| Position Function | s(t) = (1/2)g(t^2) + Vot + So... g(gravity) = -32 ft/sec^2... OR g(gravity) = -9.8 m/sec^2... Vo - initial velocity... So - initial position... |
| Velocity Function | v(t) = s'(t) |
| Value of Gravity | -32 ft/sec^2... -9.8 m/sec^2 |
| Acceleration Function | a(t) = v'(t) = s"(t) |
| Constant Multiple Rule | d/dx[cf] = cf' |
| Sum or Difference Rule | d/dx[f(+-)g] = f'(+-)g' |
| Product Rule | d/dx[fg] = fg' + gf' |
| Quotient Rule | d/dx[(f/g)] = (gf'-fg')/(g)^2 (LoDHi-HiDLo)/LoLo |
| Constant Rule | d/dx[c] = 0 |
| (Simple) Power Rule | d/dx[x^n] = nx^(n-1) d/dx[x] = 1 |
| d/dx[sin(x)] | cos(x) |
| d/dx[tan(x)] | sec^2(x) |
| d/dx[sec(x)] | sec(x)tan(x) |
| d/dx[cos(x)] | -sin(x) |
| d/dx[cot(x)] | -csc^2(x) |
| d/dx[csc(x)] | -csc(x)cot(x) |
| Chain Rule | d/dx[f(u)] = f'(u) * u' |
| General Power Rule | d/dx[u^n] = nu^(n-1) * u' |
| Pythagorean Theorem | a^2 + b^2 = c^2 |
| Area of Circle | Area = pi*r^2 |
| Circumference of Circle | C = 2*pi*r... C = pi*d |
| Volume of Cone | V = (1/3)*pi*(r^2)*h |
| tan(x) | y/x.... opp/adj |
| cos(x) | x/r.... adj/hyp |
| sin(x) | y/r.... opp/hyp |
| Volume of Sphere | V = (4/3)*pi*(r^3) |
| Calculating Time | Time = distance/speed |
| sin(a+b) | sin(a)cos(b)+sin(b)cos(a) |
| Object is Accelerating | When signs of velocity and acceleration are the same |
| Object is Deccelerating | When signs of velocity and acceleration are not the same |