or

or

taken

why

Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.

Don't know
Know
remaining cards
Save
0:01

 Flashcards Matching Hangman Crossword Type In Quiz Test StudyStack Study Table Bug Match Hungry Bug Unscramble Chopped Targets

Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

Normal Size     Small Size show me how

# Gas Laws

### gas laws and stoichiometry

TermDefinition
Kinetic Molecular Theory pt. 1 Gas molecules do not attract or repel each other
Kinetic Molecular Theory pt. 2 Gas particles are much smaller than the spaces between them
Kinetic Molecular Theory pt. 3 Gas particles are in constant, random motion
Kinetic Molecular Theory pt. 4 No kinetic energy is lost when gas particles collide with each other or with the walls of their container
Kinetic Molecular Theory pt. 5 All gases have the same kinetic energy at a given temperature
Rate of effusion depends on the mass of the particles
In diffusion, lighter particles diffuse... more rapidly than heavier particles
Graham's Law of Effusion Rate A / Rate B = sqrt(Rate B / Rate A) *compound A has the smallest molar mass
Pressure formula P= force / area
A barometer is used the measure atmospheric pressure
Units of standard pressure 101.3 kPa 1 atm 760 mmHg
Dalton's Law of Partial Pressure The total pressure of a mixture of gases is equal to the sum of the pressures of all the gases in the mixture. Ptotal = Px + Py + Pz
Pressure is measured in these 3 units: mmHg, kPa, atm
Temperature is measure in Kelvin (conversion from Celsius = C + 273)
Volume is measured in Liters
Number of particles is solved by completing gas stoichiometry
Boyle's Law P1V1 = P2V2 inverse relationship
Charles' Law V1 / T1 = V2 / T2 direct
Gay-Lussac's Law P1 / T1 = P2 /V2 direct
Combined Gas Law P1V1 / T1 = P2V2 / T2 direct
Ideal Gas Law PV = nRT p = pressure, v = volume, n = number of moles, R = given constant, T = temperature
How many variations to the Ideal Gas Law? 3
Variables M = Molar mass m = mass D = density (g/L)
Variations M = mRT / PV M = DRT / P D = MP / RT