or

or

taken

why

Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.

Don't know
Know
remaining cards
Save
0:01
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

Normal Size     Small Size show me how

# Trig Identities

TermDefinition
reciprocal identities secθ = 1/cosθ<br /> cscθ = 1/sinθ<br /> cotθ = 1/tanθ
quotient identities tanθ = sinθ/cosθ<br /> cotθ = cosθ/sinθ
odd-even identities -sinθ = sin(-θ)<br /> cosθ = cos(-θ)<br /> -tanθ = tan(-θ)<br /> -cscθ = csc(-θ)<br /> secθ = sec(-θ)<br /> -cotθ = cot(-θ)
cofunction identities sinθ = cos(π/2 - θ)<br /> cosθ = sin(π/2 - θ)<br /> tanθ = cot(π/2 - θ)<br /> cscθ = sec(π/2 - θ)<br /> secθ = csc(π/2 - θ)<br /> cotθ = tan(π/2 - θ)
pythagorean identities sin^2θ + cos^2θ = 1<br /> 1 + tan^2θ = sec^2θ<br /> 1 + cot^2θ = csc^2θ
sum and difference identities sin(α + β) = sinαcosβ + cosαsinβ<br /> sin(α - β) = sinαcosβ - cosαsinβ<br /> cos(α + β) = cosαcosβ - sinαsinβ<br /> cos(α - β) = cosαcosβ + sinαsinβ<br /> tan(α + β) = (tanα + tanβ)/(1 - tanαtanβ)<br /> tan(α - β) = (tanα - tanβ)/(1 + tanαtanβ)
double-angle identities sin2θ = 2sinθcosθ<br /> cos2θ = cos^2θ - sin^2θ,<br /> 2cos^2θ - 1,<br /> 1 - 2sin^2θ<br /> tan2θ = (2tanθ)/(1 - tan^2θ)
half-angle identities sin(1/2)θ = +/- √(1 - cosθ)/(2)<br /> cos(1/2)θ = +/- √(1 + cosθ)/(2)<br /> tan(1/2)θ = +/- √(1 - cosθ)/(1 + cosθ)
product-to-sum identities sinαsinβ = (1/2)[cos(α - β) - cos(α + β)]<br /> cosαcosβ = (1/2)[cos(α - β) + cos(α + β)]<br /> sinαcosβ = (1/2)[sin(α + β) + sin(α - β)]
Created by: carrielynn28