click below
click below
Normal Size Small Size show me how
Basic Trig IDs
Fundamental Identities: Reciprocal, Quotient, Pythagorean, Odd/Even
| Term | Definition |
|---|---|
| RECIPROCAL sin(x) | RECIPROCAL 1/csc(x) |
| RECIPROCAL cos(x) | RECIPROCAL 1/sec(x) |
| RECIPROCAL tan(x) | RECIPROCAL 1/cot(x) |
| RECIPROCAL csc(x) | RECIPROCAL 1/sin(x) |
| RECIPROCAL sec(x) | RECIPROCAL 1/cos(x) |
| RECIPROCAL cot(x) | RECIPROCAL 1/tan(x) |
| tan(x) (quotient) | sin(x)/cos(x) (quotient) |
| cot(x) (quotient) | cos(x)/sin(x) (quotient) |
| sin^2(x) + cos^2(x) | 1 (Pythagorean) |
| 1 + tan^2(x) | sec^2(x) (Pythagorean) |
| 1 + cot^2(x) | csc^2(x) (Pythagorean) |
| 1 - sin^2(x) | cos^2(x) (Pythagorean) |
| 1 - cos^2(x) | sin^2(x) (Pythagorean) |
| sec^2(x) - tan^2(x) | 1 (Pythagorean) |
| csc^2(x) - cot^2(x) | 1 (Pythagorean) |
| sec^2(x) - 1 | tan^2(x) (Pythagorean) |
| csc^2(x) - 1 | cot^2(x) (Pythagorean) |
| cos(-x) | cos(x) (odd/even) |
| sec(-x) | sec(x) (odd/even) |
| sin(-x) | -sin(x) (odd/even) |
| csc(-x) | -csc(x) (odd/even) |
| tan(-x) | -tan(x) (odd/even) |
| cot(-x) | -cot(x) (odd/even) |