Busy. Please wait.
Log in with Clever
or

show password
Forgot Password?

Don't have an account?  Sign up 
Sign up using Clever
or

Username is available taken
show password


Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.
Your email address is only used to allow you to reset your password. See our Privacy Policy and Terms of Service.


Already a StudyStack user? Log In

Reset Password
Enter the associated with your account, and we'll email you a link to reset your password.

Gases, Kinetics, and Chemical Equilibrium

Quiz yourself by thinking what should be in each of the black spaces below before clicking on it to display the answer.
        Help!  

Question
Answer
STP   standard temperature and pressure: 0 degrees C and 1 atm; where the avg distance btw gas molecules is 35 angstroms  
🗑
mean free path   distance traveled by a gas molecule between collisions  
🗑
typical gas...   loose collection of weakly attracted atoms or molecules moving rapidly in random reactions, miscible with each other (mix regardless of polarity) but over time heavier gases will settle at low T's  
🗑
kinetic molecular theory   illustrates the 4 characteristics of an ideal gas  
🗑
Rules for an ideal gas   1. gas molecules have ZERO VOLUME 2. gas molecules exert NO FORCES other than repulsive forces due to collisions 3. gas molecules make completely ELASTIC COLLISIONS 4. average KE of gas molecules is directly proportional to T of gas  
🗑
Ideal gas law   PV = nRT  
🗑
Gas constant, R   = 0.08205 L atm / K mol = 8.314 J/ mol K  
🗑
Charles law   at CONSTANT PRESSURE, volume of gas is proportional to T  
🗑
Boyle's law   at CONSTANT TEMPERATURE, volume of gas is inversely proportional to P  
🗑
standard molar volume   22.4 L; this is the volume that all gases behaving ideally will occupy if they have the same temperature, pressure, and number of molecules AT STP  
🗑
partial pressure   pressure the gas would produce in the container by itself Pa = Xa * Ptotal where Pa is the partial pressure and Xa is the mole fraction  
🗑
Dalton's law   total pressure exerted by a gaseous mixture is the sum of the partial pressure of each of its gases  
🗑
K.E.average   = 3/2 R*T average translational KE is proportional to temperature  
🗑
Graham's law   describes the ratio of the Vrms of 2 gases in a homogeneous mixture-- v1/v2 = sqrt(m2)/sqrt(m1) avg speed of pure gas is inversely proportional to the sqrt of the mass of pure gas  
🗑
effusion   spreading of a gas from high pressure to low pressure through a pinhole, rate can be predicted by Graham's law  
🗑
diffusion   spreading of one gas into another gas/empty space, rate of diffusion can be approximated by Graham's law  
🗑
real gases deviate from ideal behavior.. how and when   when molecules are close together, modeled by van der wals equation which approimxates the real P and V of a gas  
🗑
real gases deviation in terms of volume   Vreal > Videal molecules do have a volume so their volume must be added to the ideal volume  
🗑
real gases deviation in terms of pressure   Preal < Pideal bc molecules DO exhibit forces (attractive when far apart) on each other - so this will pull the gas molecules inward toward the center of gas before colliding with the container walls --> strike the wall w/ less force then predicted  
🗑
collision model requirements   1. relative kinetic energies of the colliding molecules must reach a threshold energy (activation energy) 2. colliding molecules must have the proper spatial orientation  
🗑
rate constant defined by the Arrhenius equation   k = Aexp(-Ea/RT) where Ea is the activation energy depends on pressure, catalysts and temperature  
🗑
rate of rxn ____ with temperature because _____   increases; bc more collisions with sufficient relative kinetic energy occurs each second  
🗑
overall order of rxn   sum of the exponents of each respective reactant  
🗑
rate determining step   the rate of the slowest elementary step that determines the rate of the overall reaction  
🗑
catalyst   substance that increase the rate of rxn w/o being consumed or permanently altered, can lower activation energy or increase steric factor  
🗑
heterogenous catalyst   catalyst in a different phase than reactants or products  
🗑
homogenous catalyst   catalyst in the same phase as reactants and products  
🗑
chemical equilibrium   where the forward rxn rate equals the reverse rxn rate, no change in conc of products or reactants  
🗑
equilibrium constant   K, constant to describe equilibrium, depends on temperature only = products^coeff/reactants^coeff  
🗑
reaction quotient   Q = products^coeff/reactants^coeff this is used to predict direction in which rxn will proceed  
🗑
if Q = K, then..   rxn is at equilibrium  
🗑
if Q > K, then...   reverse rxn rate will be greater in order to shift rxn to equilibrium  
🗑
if Q < K, then...   forward rxn rate will dominate in order to shift rxn to equilibrium  
🗑
Le Chatelier's principle   when a system at equilibrium is stressed, the system will shift in a direction that will reduce that stress (removal of product/reactant, changing of pressure, heating or cooling)  
🗑


   

Review the information in the table. When you are ready to quiz yourself you can hide individual columns or the entire table. Then you can click on the empty cells to reveal the answer. Try to recall what will be displayed before clicking the empty cell.
 
To hide a column, click on the column name.
 
To hide the entire table, click on the "Hide All" button.
 
You may also shuffle the rows of the table by clicking on the "Shuffle" button.
 
Or sort by any of the columns using the down arrow next to any column heading.
If you know all the data on any row, you can temporarily remove it by tapping the trash can to the right of the row.

 
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

  Normal Size     Small Size show me how
Created by: miniangel918
Popular MCAT sets