t formulae Word Scramble
|
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.
Normal Size Small Size show me how
Normal Size Small Size show me how
| Term | Definition |
| when t = tan(theta/2), sin(theta) | 2t/(1+t^2) |
| when t = tan(theta/2), cos(theta) | (1-t^2)/(1+t^2) |
| when t = tan(theta/2), tan(theta) | 2t/(1-t^2) |
| sine double angle formula | sin(2*theta) = 2cos(theta)sin(theta) |
| secant relationship with cosine | sec(theta) = 1/cos(theta) |
| cosine double angle formula | cos(2*theta) = cos^2(theta) - sin^2(theta) |
| cosecant relationship with sine | cosec(theta) = 1/sin(theta) |
| tangent double angle formula | tan(2*theta) = 2tan(theta)/(1-tan^2(theta)) |
| cotangent relation with tangent | cot(theta) := tan(90-theta), cot(theta) = 1/tan(theta) |
| differentiation of trig (yr 2) | d/dx (sin(kx)) -> kcos(kx) d/dx (cos(kx)) -> -ksin(kx) d/dx (tan(kx)) -> ksec^2(kx) d/dx (sec(kx)) -> ksec(kx)tan(kx) d/dx (cosec(kx)) -> -cosec(kx)cot(kx) d/dx (cot(kx)) -> -kcosec^2(kx) |
| when t = tan(theta/2), sin(theta) | 2t/(1+t^2) |
| when t = tan(theta/2), cos(theta) | (1-t^2)/(1+t^2) |
| when t = tan(theta/2), tan(theta) | 2t/(1-t^2) |
| sine double angle formula | sin(2*theta) = 2cos(theta)sin(theta) |
| secant relationship with cosine | sec(theta) = 1/cos(theta) |
| cosine double angle formula | cos(2*theta) = cos^2(theta) - sin^2(theta) |
| cosecant relationship with sine | cosec(theta) = 1/sin(theta) |
| tangent double angle formula | tan(2*theta) = 2tan(theta)/(1-tan^2(theta)) |
| cotangent relation with tangent | cot(theta) := tan(90-theta), cot(theta) = 1/tan(theta) |
| differentiation of trig (yr 2) | d/dx (sin(kx)) -> kcos(kx) d/dx (cos(kx)) -> -ksin(kx) d/dx (tan(kx)) -> ksec^2(kx) d/dx (sec(kx)) -> ksec(kx)tan(kx) d/dx (cosec(kx)) -> -cosec(kx)cot(kx) d/dx (cot(kx)) -> -kcosec^2(kx) |
Created by:
That cool NAMe
Popular Math sets