Busy. Please wait.
Log in with Clever
or

show password
Forgot Password?

Don't have an account?  Sign up 
Sign up using Clever
or

Username is available taken
show password


Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.
Your email address is only used to allow you to reset your password. See our Privacy Policy and Terms of Service.


Already a StudyStack user? Log In

Reset Password
Enter the associated with your account, and we'll email you a link to reset your password.

Methods Part II

Quiz yourself by thinking what should be in each of the black spaces below before clicking on it to display the answer.
        Help!  

Question
Answer
Experimenter Bias   Researchers beliefs about the expected outcome influence the results (leading questions, inadvertant reinforcement)  
🗑
Threats of Experimenter Bias   Internal Validity, it affects results. External Validity, you can't generalize to natural settings.  
🗑
Demand Characteristics   Aspects of the study or study environment that reveal the hypothesis being tested...may lead subjects to exhibit subject role (good, negativistic, apprehensive, faithful)  
🗑
Threats of Participant Bias   Internal, innaccurate results. External, can't generalize. ( use deception, single blind study, control group)  
🗑
Sampling Distribution of the means   Permute data to gather all possible samples of n size. Take mean of each possible permuted sample and build distribution.  
🗑
Single Sample T-test   Evaluates sample mean against sampling distribution mean. (population data is known)  
🗑
Basic Units of a Sampling Distribution   Xbar. Muxbar. SigmaSQRDxbar. Sigmaxbar <- std error.  
🗑
Standard Error   Standard Deviation of a sampling distribution  
🗑
Central Limit Theorem   Specifies nature of sampling distribution. *mean of sampling distribution is a pretty good estimate of the pop. mean for samples larger than N=1. Sampling distributions are more normal, with less variability.  
🗑
Why T-test?   Z underestimates population variance and gives too many rejections of null. T has more variability, flatter (platykurtic)  
🗑
Degrees of Freedom   # of Observations that are free to vary (last has to make dataset have a the set Xbar)  
🗑
Two Sample T-test (Independent)   Compares two means from two groups (usually 1 IV w/ 2 levels).  
🗑
Independent T-test Notation   Xbar1, Xbar2, S(xbar1-xbar2)  
🗑
Sampling Distribution for Independent T-test   Sampling distribution of differences between the 2 sample means.  
🗑
Variance Sum Law   The variance of the sampling distribution is the sum of the variances for the component sampling variances (i.e. std dev = S(xbar1-xbar2))  
🗑
Pooled Standard Deviation   Assume equal variances in an Independent T-test, we factor variance out (still under radical)  
🗑
Assumptions for an Independent (Two Sample) Ttest   Independent Random Sampling. Normal Populations. Equality of Variance. DV is ratio or interval.  
🗑
Intact Groups   Groups pre-formed because variable being study cannot be randomly assigned. forces btwn subjects design. May affect validity of test  
🗑
Confidence Intervals   Obtained sample mean(s) +- (TCRIT*STD ERROR). std error bars will be smaller than Confidence interval  
🗑
Paired Sample T-test (Dependent)   ALL ABOUT DIFFERENCES. within subjects. Difference score from each individual tested against expected difference of 0.  
🗑
Between Subjects ANOVA   a multi-group generalization of the t-test w/ 3 distinctions: more groups, focus on variance instead of means, uses F. Same assumptions as t  
🗑
ANOVA is one tailed because   F=t^2. Also made of SS/df and SUM of squared values cannot be negative and df cannot be negative.  
🗑
Hypothesis for Btwn Sbjt ANOVA   All are equal. Two are different from one another. NON DIRECTIONAL  
🗑
Indications of SSbtwn & SSwithin   If SSbtwn is large & SSwithin is small, null is probably true. If btwn is a fair amount and within is somewhat less, alternative is probably true. (because F=between/within)  
🗑
Family-Wise Error Rate   Refers to the chance of committing at least one type-1 error among a set of analyses  
🗑
Fisher's LSD Test   Least Significant Difference. We run modified tests between pairs ONLY IF ANOVA is significant. pretty liberal.  
🗑
Bonferroni   Alpha adjustment technique. Alpha family wise is divided by total # of comparisons.  
🗑
Post Hocs   Use DFwithin to get Tcrit from post hoc comparisons (ttests)  
🗑
Problems with Btwn Subjects ANOVA   Individual Differences cause high within group variability and mask treatment effect. Individual differences can also become confounding variables  
🗑
Subjects variability   Makes up part of Within group variability in One-way anova. Tells how much within groups variability can be attributed to individual differences  
🗑
One Way ANOVA   more sensitive to treatment effect because individual differences are accounted for. We use means of groups and means of individual subjects  
🗑
Factorial Design   A research study involving 2 or more IVs.  
🗑
Advantages of Factorial Designs   More realistic...DVs of interest are rarely ever effected by only 1 thing in real life. Shows interactions of IVS on DVs. Economical, can test multiple hypotheses at once.  
🗑
Main Effect   The mean differences among the levels of 1 factor  
🗑
Theres an Interaction if   The effects of one factor depend upon the level of another factor. If it is significant we can no longer talk about main effects.  
🗑
Simple Main Effect   The effect of one factor at one particular level of another factor  
🗑
Null Hypotheses for Factorial ANOVA   All treatments for factor A are equal. All treatments for factor B are equal. Factors are independent.  
🗑
Factorial ANOVA   we split SSbtwn(called SScells) into 3 groups. A, B & Interaction btwn A&B. Indent three groups if including Fcells in source table  
🗑
Testing Single value against known sample or population   Z test  
🗑
Mean of one group against population mean   Single sample t-test  
🗑
More than one independent variable   Use factorial ANOVA test  
🗑
One IV, two levels, Between Subjects   Independent Ttest  
🗑
One IV, two levels within subjects   Dependent T-test  
🗑
One IV, three+ levels, within subjects   One way, repeated measures ANOVA  
🗑
One IV, three+ levels, between subjects   One way, between subjects anova  
🗑
One Way ANOVA means   One IV, multiple levels  
🗑


   

Review the information in the table. When you are ready to quiz yourself you can hide individual columns or the entire table. Then you can click on the empty cells to reveal the answer. Try to recall what will be displayed before clicking the empty cell.
 
To hide a column, click on the column name.
 
To hide the entire table, click on the "Hide All" button.
 
You may also shuffle the rows of the table by clicking on the "Shuffle" button.
 
Or sort by any of the columns using the down arrow next to any column heading.
If you know all the data on any row, you can temporarily remove it by tapping the trash can to the right of the row.

 
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

  Normal Size     Small Size show me how
Created by: lpicklesimer
Popular Math sets