Busy. Please wait.
Log in with Clever
or

show password
Forgot Password?

Don't have an account?  Sign up 
Sign up using Clever
or

Username is available taken
show password


Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.
Your email address is only used to allow you to reset your password. See our Privacy Policy and Terms of Service.


Already a StudyStack user? Log In

Reset Password
Enter the associated with your account, and we'll email you a link to reset your password.

Chem Bond 2: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

        Help!  

Term
Definition
Valence Shell Electron Pair Repulsion(VESPR) Theory   Electron groups repel one another through couloumbic forces. The repulsions between electron groups on interior atoms of a molecule determine the geometry of the molecule  
🗑
Electron Groups   Lone pairs, single bonds, multiple bonds, and even single electrons  
🗑
Linear Geometry   Central atom has two electron groups. 2D. The molecular geometry of three atoms with a bond angle of 180 degrees due to the repulsion of two electron groups. Ex: BeCl2 and CO2  
🗑
Trigonal Planar Geometry   Central atom has three electron groups. 2D.The molecular geometry of four atoms with bond angles of 120 degrees in a plane. Ex: BF3  
🗑
Tetrahedral Geometry   Central atom has four electron groups. 3D. The molecular geometry of five atoms with bond angles of 109.5 degrees. Ex: CH4  
🗑
Trigonal Bypyrimidal   Central atom has five electron groups. 3D. The molecular geometry of six atoms with bond angles of 120 degrees between the three equatorial electron group and bond angles of 90 degrees between the two axial electron groups and the trigonal plane. Ex: PCl5  
🗑
Octahedral Geometry   Central atom has six electron groups. 3D. The molecular geometry of seven atoms with all 90 degree angles. Ex: SF6  
🗑
Electron Geometry   The geometrical arrangement of the electron groups  
🗑
Molecular Geometry   The geometrical arrangement of the atoms  
🗑
Bent   When a central atom has four electron groups(two bonding pairs and two lone pairs), its electro geometry is also tetrahedral, but its molecular geometry is bent. Bond angles smaller than 109.5 degrees. Bond angles are 104.5 degrees. Ex: H2O  
🗑
Electron Group Repulsion Level   Lone pair - Lone pair > Lone pair - Bonding pair > Bonding pair - Bonding pair  
🗑
Seesaw   The molecular geometry of a molecule with trigonal bypyrimidal electron geometry and on lone pair in an axial position. Resembles a seesaw. Ex: SF4  
🗑
T-Shaped   The molecular geometry of a molecule with trigonal bypyrimidal electron geometry and two lone pairs in axial position. Ex: BrF3  
🗑
Square Pyramidal   The molecular geometry of a molecule with octahedral electron geometry and one lone pair. Two of the six electron groups around the central are lone pairs. Ex: XeF4  
🗑
1, Summarizing VESPR Theory   The geometry of a molecule is determined by the number of electron groups on the central atom(or on all interior atoms, if there is more than one)  
🗑
2, Summarizing VESPR Theory   The number of electron groups is determined from the Lewis structure of the molecule. If the Lewis structure contains resonance structures, use any one of the resonance structure to determine the number of electron group  
🗑
3, Summarizing VESPR Theory   Each of the following counts as a single electron group: a lone pair, a single bond, a double bond, a triple bond, or a single electron(as in a free radical)  
🗑
4, Summarizing VESPR Theory   The geometry of the electron group is determined by their repulsions. In general, electron group repulsions vary as follows... Lone pair - lone pair > lone pair - bonding pair > bonding pair - bonding pair  
🗑
5, Summarizing VESPR Theory   Bond angles can vary from the idealized angles becuase double and triple bonds occupy more space than single bonds(they are bulkier even though they are shorter), and lone pairs occupy more space than bonding groups.  
🗑
6.Summarizing VESPR Theory   The presence of lone pairs usually makes bond anlges smaller than the ideal angle for the particular geometry  
🗑
Steps for Predicting Molecular Geometries   1. Draw Lewis Structure of molecule.. 2. Determine total # electron groups around central atom.. 3. Determine # bonding groups and # lone pairs around central atom.. 4. Refer to table 10.1 to determine the electron geometry and molecular geometry  
🗑
Straight Line For Drawing Molecules   Bond in plane of paper  
🗑
Hatched Wedge For Drawing Molecules   Bond going into the page  
🗑
Solid Wedge For Drawing Molecules   Bond coming out of the page  
🗑
Summarizing Molecular Shape and Polarity   1. Draw the Lewis structure for the molecule and determine its molecular geomtetry.. 2. Determine if the molecule contains polar bonds.. 3. Determine if the polar bonds add together to form a net dipole moment  
🗑
Valence Bond Theory   An advanced model of chemcial bonding in which electron reside in quantum-mechanical orbitals localized on individual atoms that are a hybridized blend of standard atomic orbitals; chemical bonds result from an overlap of these orbitals  
🗑
Hybridized Atomic Orbitals   A kind of blend or combination of two or more standard atomic orbitals  
🗑
Hybridization   A mathematical procedure in which the stardard atomic orbitals are combined to form new atomic orbitals, hybrid orbitals  
🗑
Hybrid Orbitals   Orbitals formed from the combination of standard atomic orbitals that correspond more closely to the actual distribution of electron in a chemically bonded atom  
🗑
1st General Statement Regarding Hybridization   The number of standard atomic orbitals added together always equals the number of hybrid orbitals formed. The total number of orbitals is conserved  
🗑
2nd General Statement Regarding Hybridization   The particular combinations of standard atomic orbitals added together determines the shape and energies of hybrid orbitals formed  
🗑
3rd General Statement Regarding Hybridization   The particular type of hybridization that occurs is the one that yields the lowest overall energy for the molecule  
🗑
Pi(π) Bond   Forms when orbitals overlap side by side  
🗑
Sigma(σ) Bond   Forms when orbitals overlap end-to-end  
🗑
Single Bond   Consists of a sigma bond  
🗑
Double Bond   Consists of a sigma bond and a pi bond  
🗑
Triple Bond   Consists of a sigma bond and 2 pi bonds  
🗑
Molecular Geometries that Are Always Polar   1. Bent 109 degrees.. 2. Bent 120 degrees.. 3. Trigonal Pyramid.. 4. Seesaw.. 5. T-shaped.. 6. Square Pyramid.. All pyramid, all bent, t-shaped, and seesaw  
🗑
Molecular Orbital Theory   An advanced model of chemical bonding in which electrons reside in molecular orbitals delocalized over the entire molecule. In the simplest version, the molecular orbitals are simply linear combinations of atomic orbitals  
🗑
Bonding Orbital   A molecular orbital that is lower in energy than any of the atomic orbitals from which it was formed  
🗑
1. Hybridization Scheme from Electron Geometry   1. #E Groups(2)..E Geom(Linear)..Hybridization Scheme(sp)... 2. #E Groups(3)..E Geom(Trigonal Planar)..Hybridization Scheme(sp^2)... 3. #E Groups(4)..E Geom(Tetrahedral)..Hybridization Scheme(sp^3)  
🗑
2. Hybridization Scheme from Electron Geometry   4. #E Groups(5)..E Geom(Trigonal Bypyramidal)..Hybridization Scheme(sp^3d)... 5. #E Groups(6)..E Geom(Octahedral)..Hybridization Scheme(sp^3d^2)...  
🗑
Antibonding Orbital   A molecular orbital that is higher in energy than any of the atomic orbital from which it was formed. Tend to raise the energy of the system(relative to the unbonded atoms)  
🗑
Bond Order   For a molecule, the number of bonds divided by the number of atoms bonded to that atom.  
🗑
Types of Intermolecular Forces   1. Dispersion(London Forces, van der Waals force).. 2. Dipole - dipole.. 3. Hydrogen bonding.. 4. Ion - dipole  
🗑
Dispersion(London forces)   Present in all molecules and atoms  
🗑
Dipole - Dipole   Present in polar molecules  
🗑
Hydrogen Bonding   Present in molecules containing H bonded to F, O, or N  
🗑
Ion - Dipole   Present in mixtures of ionic compounds and polar compounds  
🗑
Strength of Intermolecular Forces from Least to Greatest   Dispersion < Dipole-dipole < Hydrogen bonding < Ion-dipole  
🗑


   

Review the information in the table. When you are ready to quiz yourself you can hide individual columns or the entire table. Then you can click on the empty cells to reveal the answer. Try to recall what will be displayed before clicking the empty cell.
 
To hide a column, click on the column name.
 
To hide the entire table, click on the "Hide All" button.
 
You may also shuffle the rows of the table by clicking on the "Shuffle" button.
 
Or sort by any of the columns using the down arrow next to any column heading.
If you know all the data on any row, you can temporarily remove it by tapping the trash can to the right of the row.

 
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

  Normal Size     Small Size show me how
Created by: TimChemistry1
Popular Chemistry sets