Busy. Please wait.
Log in with Clever
or

show password
Forgot Password?

Don't have an account?  Sign up 
Sign up using Clever
or

Username is available taken
show password


Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.
Your email address is only used to allow you to reset your password. See our Privacy Policy and Terms of Service.


Already a StudyStack user? Log In

Reset Password
Enter the associated with your account, and we'll email you a link to reset your password.

definitions 1

Quiz yourself by thinking what should be in each of the black spaces below before clicking on it to display the answer.
        Help!  

Question
Answer
root locus   rules for ploting the paths of the roots  
🗑
What are phase conditions   root locus of L(s) is the test of points in the s-plane where the phase of L(s) is 180 degrees  
🗑
Magnitude condition   K = -1/L(s)  
🗑
Graphical calculation of the desired gain   compute the gain to place the roots at the dot(s=so) by measuring the lengths of these vectors and multiplying the lengths together  
🗑
Notch compensation   used to achieve stability for systems with lightly damped flexible modes  
🗑
Example of lag compensation   take G(s)=1/[s(s+1)], include the lead compensation KD1(s)=K(s+5.4)/(s+20) that produced the locus and raised the gain until the closed-loop roots correspond to a dampint ration of 0.5.  
🗑
Discuss contrasting methods of approximating delay   For low gains and up to the point where the loci cross the imaginary axis, the approximate curves are very close to the exact. The pade curve follows the exact curve much further than does the first-order lag, and its increased accuracy would be useful if  
🗑
frequency response plot?;   the output y is a sinusoid with the same frequency as the input u and that the magnitude ratio M and phase phi of the output are independent of the amplitude A of the input are a consequence of G(s) being a linear constant system  
🗑
Bandwidth   natural specification for system performance in terms of frequency response  
🗑
Resonant peak   maximum value of the frequency-response magnitude  
🗑
Bode form of the transfer function   KG(jw)= Ko(jwt1+1)(jwt2+1)/(jwta+1)(jwtb+1)  
🗑
Classes of terms of transfer functions   1. Ko(jw)^n, 2.(jwt+1)^+-1, 3.[(jw/wn)^2 +2squiggly(jw/wn) +1]^+-1  
🗑
Break point   w=1/tau  
🗑
Peak amplitude   |G(jw)|=1/2squiggly at w=wn  
🗑
What is neutrally stable (p. 339)?   With K defined such that a closed-loop root falls on the imaginary axis  
🗑
What is the Nyquist stability criterion (p. 340)?   Relates the open-loop frequency response to the number of closed-loop poles of the system in the RHP  
🗑
Describe the argument principle (p. 341);   A contour map of a complex function will encircle the origin Z-P times,  
🗑
.application to control design   To apply the principle to control design, we let the C1 contour in the s-plane encircle the entire RHP,  
🗑


   

Review the information in the table. When you are ready to quiz yourself you can hide individual columns or the entire table. Then you can click on the empty cells to reveal the answer. Try to recall what will be displayed before clicking the empty cell.
 
To hide a column, click on the column name.
 
To hide the entire table, click on the "Hide All" button.
 
You may also shuffle the rows of the table by clicking on the "Shuffle" button.
 
Or sort by any of the columns using the down arrow next to any column heading.
If you know all the data on any row, you can temporarily remove it by tapping the trash can to the right of the row.

 
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

  Normal Size     Small Size show me how
Created by: delafuente
Popular Science sets