Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

Normal Size Small Size show me how

Normal Size Small Size show me how

# Calc. Quick review

Question | Answer |
---|---|

d/dx (f*g)= | f'*g + f*g' |

d/dx (f/g)= | (f'*g - f*g')/g^2 |

d/dx [f(g)] = | f'(g) * g' |

d/dx (x^n) = | nx^-1 |

d/dx (sin x) = | cos x |

d/dx (cos x) = | -sin x |

d/dx (tan x) = | sec^2(x) |

d/dx (cot x) = | -csc^2(x) |

d/dx (sec x) = | sec(x) tan (x) |

d/dx (csc x) = | -csc(x) cot(x) |

d/dx (e^x) | e^x |

d/dx (a^x) | (ln(a))a^x |

d/dx (log(base a)^x) | 1/(ln a) * x |

Area of a rectangle | A=bh |

Area of a triangle | A=1/2 (b)(h) |

Area of a circle | A=pi r^2 |

Circumference of a circle | 2(pi)r |

Volume of a sphere | V= 3/4(pi)r^(3) |

Area of a sphere | 4(pi)r^2 |

Volume of a cylinder | V=(pi)r^2 |

Area of a cylinder | 2(pi)rh + 2(pi)r^2 |

<img src="http://www.danlemay.net/oxbow/images/study_stacks/def%20of%20e2.png"> | the derivative of y=e^x at x = 2 |

Created by:
Lestrade