Welcome to StudyStack, where users create FlashCards and share them with others. Click on the large flashcard to flip it over. Then click the green, red, or yellow box to move the current card to that box. Below the flashcards are blue buttons for other activities that you can try to study the same information.
Reset Password Free Sign Up

Free flashcards for serious fun studying. Create your own or use sets shared by other students and teachers.

Remove ads
Don't know (0)
Know (0)
remaining cards (0)
To flip the current card, click it or press the Spacebar key.  To move the current card to one of the three colored boxes, click on the box.  You may also press the UP ARROW key to move the card to the "Know" box, the DOWN ARROW key to move the card to the "Don't know" box, or the RIGHT ARROW key to move the card to the Remaining box.  You may also click on the card displayed in any of the three boxes to bring that card back to the center.

Pass complete!

"Know" box contains:
Time elapsed:
restart all cards

Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

  Normal Size     Small Size show me how



States pressure is inversely proportional to volume @ constant temperature Boyles Law
During expiration, intrapulmonary pressure increases & volume decreases Boyles Law
P1,V1=P2,V2 Boyles Law
Volume increases, pressure decreases Boyles Law
Explains why a large volume of a gas is released from a pressurized cylinder Boyles Law
Volume is directly proportional to the absolute temperature @ constant pressure Charles Law
temperature increases, volume increases Charles Law
V1/T1=V2/T2 Charles Law
Inflatable cuff of an LMA expands when placed into an autoclave for sterilization. Examples of what law? Charles Law
Pressure is directly proportional to absolute temperature if volume is constant Gay-Lussac's Law
As temperature in a gas in a container increase, pressure increases Gay-Lussac's
P1/T1=P2/T2 Gay-Lussac's
P1 V1= P2 T2T1 T2 Combined Gas Laws
Ideal Gas law states amount of gas is determined by its Pressure, Volume & temperature
Combined Law states Product of the volume of gas & its pressure over temperature is equal to a constant
How do you change the state of a molecule/atom? Add heat, it increases the molecular vibration
the number of molecules in 1 mole of a substance Avogadro's numvber
1 mole of gas at standard temperature & pressure occupies a certain volume Avogadro's hypothesis
Avogadro's number 6.022X10 e23
Avagadro's hypothesis 22.4 liters
Avogadro's law Describes the relationship between the amount of gas & volume of gas
total pressure in a mixture of gasses is equal to the sum of the partial pressures of the individual gases, assuming the gases DO NOT react w/ each other Dalton's Law of Partial Pressure
According to Boyle's Law: If volume increases you would expect pressure decreases
According to Charle's Law: If Temperature increases, you would expect Volume decreases
According to Gay-Lussac's Ideal Law: If temperature increases, you would expect Pressure to increase
Ideal Gas Law PV=nRT
According to Ideal Gas Law: as number of moles(n) decreases Pressure decreases
Gas constant of ideal gas law is equal to? #In the equation: PV=nRT 0.0821 L atm

bad sites Copyright ©2001-2016  StudyStack LLC   All rights reserved.