Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

Normal Size Small Size show me how

Normal Size Small Size show me how

# Kreyszing

Question | Answer |
---|---|

Gauss hypergeometric equation | x(1-x)y"+[c-(a+b+1)x]y'-aby=0 |

Gauss hypergeometric equation solution | 1+abx/1!c+a(a+1)b(b+1)x^2/2!c(c+1)+... |

Bessel equation | x^2y"+xy'+(x^2-v^2)y=0 |

Coefficient recursion for Bessel equation___. | (2m+2v)2ma(2m)+a(2m-2) =0 odd coefficients are zero |

Bessel function Jn(x) is obtained by keeping v=n and a0=1/2^n n! then Bessel function for order n is___. | x^nsum(m=0-inf.)(-1)^m x^2m/2^(2m+n)m!(n+m)! |

Bessel function Jn(x)~ where ~ is asymptotically read | sqrt(2/pi*x)cos(x-(n*pi/2)-(pi/4)) |

Gamma(v)=___ | integral(0-inf)exp(-t)t^v-1dt |

Jv(x)=___. | x^vsum(m=0-inf)(-1)^mx^2m/2^(2m+v)m!gamma(v+m+1) |

General solution of Bessel equation | c1Jv(x)+c2J-v(x)if v is not a integer |

If v is a integer then Jn(x) and J-n(x) are linearly dependent by___. | J-n(x)=(-1)^nJn(x) |

Derivative properties for bessel function | (x^vJv(x))'=x^vJv-1(x) (x^-vJv(x))'=-x^-vJv+1(x) |

Recurrence relations for Bessel function | Jv-1(x)+Jv+1(x)=2vJv(x)/x Jv-1(x)-Jv+1(x)=2J'v(x) |

J1/2(x)=___,J-1/2(x)=___. | sqrt(2/pi*x)sinx sqrt(2/pi*x)cosx |

If y"+py'+q=0 is substituted y=uv with v=exp(-integral(p/2dx)) then equation got changed to__if again substitute y=ux^-.5 then it is reduced to___. | u"+[q-p^2/4-p'/2]u=0 x^2u"+(x^2+1/4-v^2)u=0 |

Second kind of Bessel function | 2Jn(x)(lnx/2+k)/pi+x^nsum(m=0-inf)(-1)^m-1(hm + hm+n)x^2m/2^2m+nm!(m+n)!)/pi-x^-nsum(m=0-n-1)(n-m-1)!x^2m/2^2m-n m!)/pi |

Yv(x)=___ | (Jvcos(vpi)-J-v(x))/sin(vpi) |

Sturm liouville problems | [py']'+[q+kr]y=0 |

If any function is written as sum(m=0-inf)a(m)y(m)) then a(m) | (f,ym)/(ym,ym) |

||Pm(x)||= | sqrt(2/2m+1) |

Bessel inequality___. Parseval equality___. | Sum(m=0-k)a(m)^2=<||f||^2 Sum(m=0-inf)a(m)^2=||f||^2 |

Hermite polynomials | (-1)^nexp(x^2/2)d^n(exp(-x^2/2))/dx^n |

Generating functions G=sum(m=0-inf)an(x)t^n where Hen=n!an(x) | exp(tx-t^2/2) |

Hen'(x)=___. | nHen-1(x) |

Hen(x) satisfies equation w=exp(-x^2/4)y satisfies Weber equations___. | y''-xy'+ny=0 w''+(n+1/2-x^2/4)w=0 |

Integral transform___. | F(s)=integral(0-inf)k(s,t)f(t)dt |

Laplace equation___. | Integral transform k(s,t)=exp(-st) |

Linearity of Laplace transform___. | L(af+bg)=aL(f)+bL(g) |

Application of linearity of Laplace transform L(cosh(at))=___,L(sinh(at))=___. | s/s^2-a^2 a/s^2-a^2 |

3Methods for deriving Laplace transform of cos,sin | By calculus,by transforms using derivatives,by complex methods |

L(cos(at))=___. L(sin(at))=___. | s/s^2+a^2 a/s^2+a^2 |

L(t^a)=___where a is positive. | Gamma(a+1)/s^a+1 |

L(exp(at)cos(wt))=___,L(exp(at)sin(wt))=___. | s-a/(s-a)^2+w^2 w/(s-a)^2+w^2 |

If f(t) has a Laplace transform F(s) L(exp(at)f(t)) | F(s-a) |

What is existence theorem for Laplace transform? | If f is defined and piecewise continuous on every finite interval on t=>0 and satisfies |f(t))<=Mexp(kt).This sufficient but not necessary. |

Laplace transform L(f(^n))=___. | s^nL(f)-s^n-1f(0)-s^n-2f'(0)-s^n-3f''(0)-...-f(^n-1)(0) |

Let F(s) denote the transform of a function f(t) which is piecewise continuous for t>=0 and satisfies a growth restriction | L(0integraltf(c)dc)=F(s)/s |

L(u(t-a))=___. L(f(t-a)u(t-a))=___. | exp(-as)/s exp(-as)F(s) |

fk(t-a)=1/k a<=t<=a+k 0 otherwise Dirac delta function=___. | lim(k->0)fk(t-a) |

The Laplace transform of a piecewise continuous function f(t) with period p is L(f)=___. | 0integralp(exp(-st)f(t)dt)/(1-exp(-ps)) |

Convolution of f and g___. | H=0integraltf(c)g(t-c)dc |

L(H) | FG |

F'(s)=___. sintegral inf(F(s~)ds~)=___. | L[tf(t)] L{f(t)/t)} |

Laguerre's ODE___. Ln(t)=___. Recursion of Laguerre Polynomial | ty''+(1-t)y'+ny=0 exp(t)dn(t^nexp(-t))/n!dtn (n+1)l(n+1)=(2n+1-t)l(n)-nl(n-1) |

Generating function of Laguerre Polynomials | exp(tx/(x-1))/(1-x) |

For systems of ODEs y'=Ay+g therefore | (A-sI)Y=-y(0)-G |

Created by:
jatint