Busy. Please wait.
Log in with Clever
or

show password
Forgot Password?

Don't have an account?  Sign up 
Sign up using Clever
or

Username is available taken
show password


Make sure to remember your password. If you forget it there is no way for StudyStack to send you a reset link. You would need to create a new account.
Your email address is only used to allow you to reset your password. See our Privacy Policy and Terms of Service.


Already a StudyStack user? Log In

Reset Password
Enter the associated with your account, and we'll email you a link to reset your password.

Stull Chapter 11

Quiz yourself by thinking what should be in each of the black spaces below before clicking on it to display the answer.
        Help!  

Question
Answer
Radiative Differential Heating   Net radiative heating in tropics and net radiative cooling at poles creates and imbalance in the atmosphere/ocean system.  
🗑
Thermal Wind Relationship   The relationship between horizontal and vertical temperature gradient of geostrophic wind. dUg/dz=(-g/Tvfc)(dTv/dy) dVg/dz=(g/Tvfc)(dTv/dx) The north-south temperature gradient alters the east-weest geostrophic winds with height, and vice versa.  
🗑
Thermal Wind Components   UTH=Ug2-Ug1=-(g/fc)(dTH/dy) VTH=Vg2-Vg1=(g/fc)(dTH/dx) *Implies that the thermal wind is parallel to the thickness contours (cold temps to left in N hemisphere).  
🗑
What is the Thermal Wind?   The vector difference between geostrophic winds at two different heights or pressures.  
🗑
Troposphere Trends   The tropopause is lower near poles than near equator. Causing the air over the equator to be colder and warmer over the poles in the stratosphere.  
🗑
Thickness vs. Isobars   Greater TH btwn P sfcs in warmer equatorial air than colder polar air causes isobars to become more tilted at mid-latitudes as tropopause is approached. Regions with greatest tilt have greatest S-N P gradient -- drives fastest geostrophic wind.  
🗑
Jet Stream   Fast geostrophic wind occurs in region greatest S-N P gradient; @ tropopause in mid-lat; move N in summer, S in winter. Velocity +, E-W, in N/S hemis. Mark boundary btwn cold air & warm air b/c T dif generates jet stream winds (thermal wind relationship).  
🗑
Jet Stream Speeds   Actual average speeds of 40 m/s are observed over a three-month average in the winter hemisphere. Velocities up to 100 m/s can be observed on individual days.  
🗑
Angular Momentum- Theoretical   Eastward angular momentum conserved as it moves northward from a source latitude [phi]s to a destination [phi]d.  
🗑
Angular Momentum and the Earth   Radius - Earth's axis to [phi]: R[phi]=ReCos([phi]) Tangential velocity - Earth at [phi]: U[phi]=[omega]R[phi]=[omega]ReCos([phi]) Air parcel - source to dest., velocity relative to Earth: U'=[omega]Re((Cos([phi]s)^2/Cos([phi]d))-cos([phi]d)).  
🗑
Angular Momentum - Actual   Angular momentum is not conserved b/c P gradient, Coriolis, and turbulent drag forces act on the air. The actual vertical circulation pattern extends only to about 30 deg N and S (Hadley Cell).  
🗑
Relative Vorticity   A measure of the rotation of fluids about a vertical axis relative to Earth's sfc. Positive in counterclockwise direction. [Zeta]r=dV/dx-dU/dy [Zeta]r=-dM/dn+M/R If the fluid is rotating as a solid body, [Zeta]r=2M/R  
🗑
Absolute Vorticity   Measure with respect to "fixed" stars. Earth's rotation in addition to the relative vorticity. [Zeta]a=[Zeta]r+fc The Coriolis parameter is a measure of the vorticity of the planet.  
🗑
Potential Vorticity   Absolute vorticity divided by depth of rotating column of air. [Zeta]p=([Zetar]r+fc)/dz=constant Conserved in the absence of turbulent drag and heating.  
🗑
Vorticities Combined   If rotating column of air is stretched vertically, then relative vorticity must increase or move further N where planetary vorticity is greater. Relative={Shear={-dM/dn} Curvature={M/R}} Planetary={fc} Stretching={[Zeta]p(dz)} -dM/dn+M/R+fc=[Zeta]p(dz  
🗑
Planetary Waves   The jet stream meanders N and S in a wavy pattern due to instabilities in the atmosphere as they circle the globe. average wavelength of 3000 km to 4000 km.  
🗑


   

Review the information in the table. When you are ready to quiz yourself you can hide individual columns or the entire table. Then you can click on the empty cells to reveal the answer. Try to recall what will be displayed before clicking the empty cell.
 
To hide a column, click on the column name.
 
To hide the entire table, click on the "Hide All" button.
 
You may also shuffle the rows of the table by clicking on the "Shuffle" button.
 
Or sort by any of the columns using the down arrow next to any column heading.
If you know all the data on any row, you can temporarily remove it by tapping the trash can to the right of the row.

 
Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

  Normal Size     Small Size show me how
Created by: lawli
Popular Science sets