Embed Code - If you would like this activity on your web page, copy the script below and paste it into your web page.

Normal Size Small Size show me how

Normal Size Small Size show me how

# Chapter 7 Note

### Chapter 7 Trig notes

Question | Answer |
---|---|

Law of Sines | -Used to solve non-rt triangles -To find sides: a/sinA=b/sinB=c/sinC -To find Angles: sinA/a=sinB/b=sinC/c |

LoS: The Ambiguous Case (Don't make an A.S.S of your self) | Only Applies to Angle Side Side case -Possible no solution, 2 solutions, or 1 solution. -To determine: Solve triangle ABC, find < prime (<') of smallest angle. -Angle prime= supplement of <. -If <A + <B + <' is = to 180 then triangle has two solutions. |

Law of Cosines Formulas | Given 1 side: a^2=b^2+c^2-2bc(cosA) *b^2=a^2+c^2-2ac(cosB) *c^2=a^2+b^2-2ab(cosC) |

Area of Triangle (SAS & Area=S) | S=1/2bc(sinA) S=1/2ac(sinB) S=1/2ab(sinC) |

Area of Triangle (AAS or ASA & Area=S) | S=a^2sinBsinC/2sinA S=b^2sinAsinC/2sinB S=c^2sinAsinB/2sinC |

Area of Triangle (SSS & Area=S) | S=√s(s-a)(s-b)(s-c) where s=a+b+c/2 |

Vector Addition & Subtraction | Vector U+V=< ux+uy,vx+vy> Vector U-V=< ux-uy,vx-vy> |

Scalar Multiplication | If, Vector U=< ux,uy> and C=scalar (any real #) then, C(U)=C< ux,uy> or < C(ux),C(uy)> -Simply Mult. the cords by the scalar |

Magnitude of Vector | lCU + CVl=√a^2+b^2 |

Dot Product | U•V=ux(uy)+uy(vy) |

Cosine Theorem | U•V=lUllVlcosθ also, cosθ=U•V/lUllVl |

Created by:
ed_delao